The Effect of the Inhibitory Composition on the Composition of Paraffin Hydrocarbons in Oil Sediments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of an inhibitory composition based on an amphiphilic polymer of polyacrylate and stearic acid on the composition of paraffinic hydrocarbons in asphalt-resin-paraffin deposits (ARPD) of high-paraffin oil was studied. It is shown that with the addition of an amphiphilic polymer and a composition to oil, differences are observed in the nature of their molecular mass distribution of paraffinic hydrocarbons of the surfactants. The action of the polymer leads to a decrease in the content of hydrocarbons of the composition C16–C21 and an increase in the proportion of high-molecular hydrocarbons C22–C34. The use of stearic acid as a surfactant in the composition, on the contrary, reduces the amount of high molecular weight paraffin hydrocarbons.

Full Text

Restricted Access

About the authors

I. V. Prozorova

Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: piv@ipc.tsc.ru
Russian Federation, Tomsk

N. V. Yudina

Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: natal@ipc.tsc.ru
Russian Federation, Tomsk

References

  1. Eke W., Kyei S. K., Achugasim O., Ajienka J. A. // Applied Petrochem. Res. 2021. № 2. Р. 199. https://doi.org/10.1007/s13203-021-00271-1
  2. Bin X. // Petrol. Sci. Tech. 2018. V. 36. P. 1635. https://doi.org/10.1080/10916466.2018.1496113
  3. Zhao Y., Kumar L., Paso K., Safieva J. // Energy Fuels. 2012. V. 26. № 10. P. 6323. https://doi.org/10.1021/ef3012454
  4. Singh P., Venkatesan R., Fogler H.S. Nagarajan N. // AIChE Journal. 2000. V. 46. № 5. Р. 1059. https://doi.org:10.1002/aic.690460517
  5. Vignati E., Piazza R., Visintin R.F.G., Lapasin R, D’Antona P., Lockhart T.P. // Physics: Condensed Matter. 2005. V. 17. № 45. P. 3651. https://doi.org:10.1088/09538984/17/45/061
  6. Quan Q., Wang W., Wang P., Yang J. // Brazilian J. Chem. Eng. 2016. V. 33. № 4. Р. 1055. https://doi.org:10.1590/0104-6632.20160334s20150023
  7. Visintin R.F.G., Lapasin R., Vignati E., D’Antona P. // Langmuir. 2005. V. 21. № 14. P. 6240. https://doi.org/10.1021/la050705k
  8. Вidmus H.O., Mehrotra A.K. // Energy Fuels. 2009. V. 23. № 6. Р. 3184. https://doi.org:10.1021/ef900224r
  9. Lee J., Zahir L.Н.A., Larsson R.G. // Energy Fuels. 2020. V. 34. № 10. P. 12330. https://doi.org/10.1021/acs.energyfuels.0c02184
  10. Cabanillas J.P., Leiroz A.T., Azevedo L.F.A. // Energy Fuels. 2016. V. 30 № 1. Р. 1. https://doi.org/10.1021/acs.energyfuels.5b02344

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Molecular weight distribution of n-alkanes in oil fractions of ARPD at addition of polymer and stearic acid: (a) - oil, (b) - ARPD, (c) - ARPD of oil + P, (d) - ARPD of oil + С18Н36О2, (e) - ARPD of oil + С18Н36О2 + P

Download (336KB)
3. Fig. 2. Microphotographs of oil fractions of the studied samples: (a) - ARPD of source oil, (b) - ARPD of oil + P, (c) - ARPD of oil + С18Н36О2, (d) - ARPD of oil + С18Н36О2+P

Download (434KB)

Copyright (c) 2024 Russian Academy of Sciences