Research of the processes of ignition and combustion of mixed fuels based on coal and wood under different conditions of thermal influence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ignition processes of mixed fuels formed on the basis of grade 3B coal from the Maikuben deposit and finely dispersed sawmill and woodworking waste have been studied. An analysis of the processes of ignition and combustion of fuel mixtures with different organization of combustion processes was performed. It has been established that the concentration of the wood component has a significant impact on the processes of the onset of oxidation and combustion of mixed fuels. When the proportion of wood component in the mixture increases to 50%, the ignition delay time decreases by an average of 18% in all cases of the studies performed.

Full Text

Restricted Access

About the authors

A. D. Misyukova

National Research Tomsk Polytechnic University; Gorbachev Kuzbass State University

Author for correspondence.
Email: adm14@tpu.ru
Russian Federation, Tomsk, 634059; Kemerovo, 650000

S. A. Yankovsky

National Research Tomsk Polytechnic University; Gorbachev Kuzbass State University

Email: jankovsky@tpu.ru
Russian Federation, Tomsk, 634059; Kemerovo, 650000

A. K. Berikbolov

National Research Tomsk Polytechnic University

Email: akb10@tpu.ru
Russian Federation, Tomsk, 634059

N. S. Yankovskaya

National Research Tomsk Polytechnic University

Email: nsy4@tpu.ru
Russian Federation, Tomsk, 634059

References

  1. Zhang Y., Mckechnie J., Cormier D., Lyng R. // Environ Sci Technol. 2010. V. 44. № 1. P. 538. https://doi.org/10.1021/es902555a
  2. Volkova M.V. // Russian regions in the focus of change. 2019 (Ekaterinburg, Russia, November 17–19, 2022). P. 154.
  3. Yaqub Z.T., Oboirien B.O., Akintola A.T. // J. Mat. Cycles and Waste Management. 2021. Springer, 2021. V. 23. № 3. P. 899. https://doi.org/10.1007/s10163-021-01180-0
  4. Kaza S, Yao L., Bhada-Tata P., Van Woerden F. // What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. (Washington, DC: World Bank, 2018) (accessed: 15.12.2022).
  5. Qamar O., Jamil F., Hussain M., Al-Muhtaseb A., Inayat A., Waris A., Akhter P., Park Y. // Chem. Eng. J. 2023. V. 454. P. 140240. https://doi.org/10.1016/J.CEJ.2022.140240
  6. Weldu Y.W., Assefa G., Jolliet O. // Appl. Energy. Elsevier. 2017. V. 187. P. 564. https://doi.org/10.1016/j.apenergy.2016.11.101
  7. Syrodoy S. V., Kostoreva J.A., Kostoreva A.A., Asadullina L.I. // J. Energy Institute. Elsevier. 2020. V. 93. № 2. P. 443. https://doi.org/10.1016/j.joei.2019.07.007
  8. Bai X., Lu G., Bennet T., Sarroza A., Eastwick C., Liu H., Yan Y. // Exp. Therm. Fluid Sci. Elsevier. 2017. V. 85. P. 322. https://doi.org/10.1016/j.expthermflusci.2017.03.018
  9. Mouton L., Trigaux D., Allacker K., Röck M. // Energy Build. Elsevier. 2023. V. 282. P. 112678. https://doi.org/10.1016/j.enbuild.2022.112678
  10. Rohr A.C., Campleman S., Long Ch., Pererson M., Weatherstone S., Quick W., Lewis A. // Intern. J. Environmental Res. and Public Health 2015. V. 12. P. 8542. https://doi.org/10.3390/ijerph120708542
  11. Yankovsky S. Tolokol’nikov A., Gorshkov A., Misyukova A., Kuznetsov G. // App. Sci. (Switzerland). MDPI 2021. V. 11. № 24. P. 301. https://doi.org/10.3390/app112411719.
  12. Xu Y., Yang K., Zhou J., Zhao G. // Sustainability 2020. V. 12. P. 3692. https://doi.org/10.3390/su12093692
  13. Xu Y., Axt Ch., Song M., Kneer R., Li Sh. // Proc. Combustion Institute. Elsevier. 2021. V. 38. № 3. P. 4179. https://doi.org/10.1016/j.proci.2020.07.131
  14. Riaza J., Khatami R., Levendis Y., Alvarez L., Gil M., Pevida C., Rubiera F., Pis J. // Biomass Bioenergy. Pergamon. 2014. V. 64. P. 162. https://doi.org/10.1016/j.biombioe.2014.03.018
  15. Flower M., Gibbins J. // Fuel. Elsevier. 2009. V. 88. № 12. P. 2418. https://doi.org/10.1016/j.fuel.2009.02.036
  16. Wang G., Silva R., Azevedo J., Martins-Dias S., Costa M. // Fuel. Elsevier. 2014. V. 117. P. 809. https://doi.org/10.1016/j.fuel.2013.09.080
  17. Mason P., Darvell L., Pourkashanian M., Williams A. // Fuel. Elsevier. 2015. V. 151. P. 21. https://doi.org/10.1016/j.fuel.2014.11.088
  18. Qi S., Wang Zh., Costa M., He Y., Cen K. // Fuel. Elsevier. 2021. V. 283. P. 118956. https://doi.org/10.1016/j.fuel.2020.118956
  19. Rashwan S., Ibrahim A., Abou-Arab Th., Nemitallah M., Habib M. // Energy. Elsevier Ltd. 2017. V. 122. P. 159–167. https://doi.org/10.1016/j.energy.2017.01.086
  20. Янковский С.А., Кузнецов Г.В., Мисюкова А.Д. // ХТТ. 2022. № 1. P. 57. [Solid Fuel Chemistry, 2022. V. 1. P. 57. https://doi.org/10.31857/S0023117722010108
  21. Kuznetsov G., Cherednik I., Galaktionova A., Yankovsky S. // J. Phys. Conf Ser. 2021. V. 2057. № 1. P. 012128. https://doi.org/10.1088/1742-6596/2057/1/012128

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental setup for studying ignition and combustion of mixed fuels during thermal heating in a layer: 1 – temperature-controlled muffle furnace; 2 – mixed fuel weighing 1 g; 3 – coordinate device with drive; 4 – platinum-rhodium thermocouple; 5 – high-speed video camera; 6 – Termodat signal converter; 7 – personal computer; 8, 9, 10, 11, 12 – communication channels between equipment [21].

Download (409KB)
3. Fig. 2. Schematic diagram of the experimental setup for studying the ignition processes of a biomass particle and a coal particle located at a certain distance from each other (1; 2 and 3 mm): 1 – furnace with adjustable temperature, 2 – high-speed chamber, 3 – holder with needles for attaching a biomass particle and a coal particle, 4 – coordinate mechanism, 5 – communication channel of the coordinate mechanism with a laptop, 6 – communication channel of the camera with a laptop, 7 – laptop.

Download (313KB)
4. Fig. 3. Schematic diagram of the experimental setup for studying the ignition of pulverized fuels in an air flow: 1 – temperature-controlled muffle furnace; 2 – pulverized particles of coal and wood; 3 – holder; 5 – high-speed video camera; 9 – personal computer; 4, 6, 8 – communication channels between the elements of the setup.

Download (344KB)
5. Fig. 4. Change in ignition delay times during layer combustion of mixed fuels based on coal from the Maikuben deposit and finely dispersed wood: 1 – U_100%, D_0%; 2 – U_90%, D_10%; 3 – U_75%, D_25%; 4 – U_50%, D_50%.

Download (93KB)
6. Fig. 5. The ignition process of pulverized mixed fuels located in a layer: (a) – 100%_U/0%_D; (b) – 90%_U/10%_D; (c) – 75%_U/25%_D; (d) – 50%_U/50%(D).

Download (148KB)
7. Fig. 6. The influence of the wood component on the process of ignition of a coal particle with a change in the distance from one another by 1, 2 and 3 mm: 1 – coal, 2 – wood.

Download (108KB)
8. Fig. 7. Change in ignition delay times during continuous combustion of mixed fuels based on coal from the Maikuben deposit and finely dispersed wood (1 – U_100%, D_0%; 2 – U_90%, D_10%; 3 – U_75%, D_25%; 4 – U_50%, D_50%).

Download (106KB)
9. Fig. 8. The ignition process of floating dust-like mixed fuels in the temperature range of 600°C, 700°C and 800°C (a – 100%_U/0%_D; b – 90%_U/10%_D; 75%_U/25%_D; c – 50%_U/50%_D (1 – particles entering the frame; 2 – start of the ignition process; 3 – ignition of mixtures).

Download (242KB)

Copyright (c) 2024 Russian Academy of Sciences