Activation of the process of layer combustion of bitter coal with iron nitrate and waste of metal rolling production

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of metal-rolling production waste and iron nitrate on the characteristics of the process of layer combustion of coal is investigated. As a solid fuel, coal of the T grade was used. Metal scale and iron nitrate were introduced into the fuel by mechanical mixing. According to XRD data, phases of iron oxides Fe3O4 and manganese Mn3O4 were identified in the metal scale. The characteristics of the combustion process of the studied samples were studied using high-speed video with the use of a combustion chamber at a heating medium temperature of 700°C. Combustion Also, the process of activated layer combustion coal was scaled using a solid fuel boiler unit. It has been experimentally established that the use of metal scale and iron nitrate leads to an increase in the reactivity of the fuel, as evidenced by a decrease in the ignition delay time. Due to the intensification of the combustion process, the fuel underburning and the concentration of CO formed in the composition of gas-phase combustion products were reduced.

Texto integral

Acesso é fechado

Sobre autores

M. Shuataev

National Research Tomsk Polytechnic University

Autor responsável pela correspondência
Email: mks11@tpu.ru
Rússia, Tomsk, 634050

A. Kaltaev

National Research Tomsk Polytechnic University

Email: azk2@tpu.ru
Rússia, Tomsk, 634050

K. Larionov

National Research Tomsk Polytechnic University; Gorbachev Kuzbass State Technical University

Email: laryk070@gmail.com
Rússia, Tomsk, 634050; Kemerovo, 650000

Bibliografia

  1. URL: https://www.iea.org/energy-system/fossil-fuels/coal (Дата обращения 09.10.2023).
  2. URL: https://www.iea.org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-data-explorer (Дата обращения 09.10.2023).
  3. Ismagilov Z.R., Kerzhentsev M.A. // Catal. Today. 1999. V. 47. № 1–4. P. 339.
  4. Simonov A.D., Fedorov N.A., Dubinin Y.V., Yazykov N.A., et al.// Catal. Ind. 2013. V. 5. № 1. P. 42.
  5. Xuzhong G., Guo Zh., Wang Zh.// Combustion and Flame 2010. V.157. № 2. P. 351.
  6. Ma B.G., Li X.G., Xu L., Wang K., Wang X.G. // Thermochimica Acta. 2006. V. 445. №. 1. P. 19.
  7. Yin K., Zhou Y.M., Yao Q.Z., Fang C., Zhang Z.W. // Reaction Kinetics, Mechanisms and Catalysis. 2012. V. 106. №. 2. P. 369.
  8. Zou C., Wen L., Zhang S., Bai C., Yin G. // Fuel Process Technol. 2014. V. 119. P. 136.
  9. Cheng J., Zhou F., Xuan X., Liu J., et al. // Fuel. 2017. V. 187. P. 398.
  10. Zhang H., Dou B., Li J., Zhao L., Wu K. // J. Energy Inst. 2020. V. 93. P. 2526.
  11. Lei Z., Liu M., Yan J., Chun T. et al. // Fuel. 2021. V. 289. P. 119779.
  12. Zou C., Zhao J. // J. Energy Inst. 2017. V. 90. P. 797.
  13. Larionov K.B., Berezikov N.., Kaltaev A.Zh. Gorshkov A.S. // Coke Chem. 2022. V. 65. P. 167.
  14. Larionov K.B., Mishakov I.V., Slyusarskiy K.V., Tsibulskiy S.A., Tabakaev R.B., Bauman Y.I., Vedyagin A.A., Nalivaiko A.Y., Gromov A.A. et al. // Fuel Process. Technol. 2021. V. 213. P. 106706.
  15. Wang C., Lei M., Yan W., Wang S., Jia L. // Energy and fuels. 2011. V. 25. № 10. P. 4333.
  16. Gubin A.V., Kaltaev A.Z., Gorshkov A.S., Matveeva A.A., Larionov K.B. // Coke Chem. 2023. V. 66. № 5. P. 237.
  17. Larionov K.B., Kaltaev A.Z., Berezikov N.I. et al. // Combust. Sci. Technol. 2022. P. 1.
  18. Carvill J. Mechanical engineer’s data handbook. Butterworth-Heinemann, 1994. 342 p.
  19. Kuznetsov G.V., Malyshev D.Y., Syrodoy S.V. et al. // Combust. Sci. Technol. 2022. V. 194. P. 1003.
  20. Wiwik S Watanabe, Dong-Ke Zhang. // Fuel Process. Technol. 2001. V. 74. P. 145
  21. Wang Y., Wang J., Chen H., Yao M., Li Y. // Chem. Eng. Sci. 2015. V. 135. P. 294.
  22. Richardson H.W. Copper Compounds in Ullmann’s Encyclopedia of Industrial Chemistry 2002. 30 p.
  23. Yanguang Ch., Guo Zh., Wang Zhi. // Fuel Proc. Technol. 2009. V. 90. № 7–8. P. 933.
  24. Larionov K.B., Gromov A.A.// Intern. J. Coal Science & Technology. 2019. V. 6. № 1. P. 37.
  25. Sun J., Zhao B., Su Y. // Energy. 2019. V. 185. P. 229.
  26. Müller C.R., Bohn C.D., Song Q.,. Scott S.A, and Dennis J.S. // Chem. Engng J. 2011. V. 166. № 3. P. 1052.
  27. Yang N., Yu J., Dou J., Tahmasebi A. et al. // Fuel Process. Technol. 2016. V. 152. P. 102.
  28. Fennell P.S., Dennis J.S., Hayhurst A.N. // Energy & Fuels. 2011. V. 25. № 4. P. 1510.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental stand for the study of the layered combustion of solid fuels: 1 – boiler unit with a layered combustion method, 2 – ash chamber door, 3 – gorenje chamber cleaning door, 4 – loading door, 5 – capillary thermometer, 6 – frequency regulator, 7 – regulators of primary and secondary air, 8 – smoke extraction, 9 – expansion tank, 10 – coolant circulation pump, 11 – heat consumer (heat fan), 12 – in–line gas analyzer of combustion products, 13 - personal computer for data collection and processing of in-line gas analyzer.

Baixar (104KB)
3. Fig. 2. Ignition delay time ti of the studied samples at the temperature of the heating medium Tg = 700 °C. The values are calculated from high-speed video data.

Baixar (62KB)
4. Fig. 3. High-speed video footage of the ignition and subsequent combustion processes of the studied samples. Gorenje The temperature of the heating medium is Tg = 700°C, the weight of the suspension is 0.1 g.

Baixar (317KB)
5. Fig. 4. Graphs of flue gas output during combustion on the fuel suspension at the temperature of the heating medium Td = 700 ° C (CO (a), CO2 (b), NOx (c)).

Baixar (252KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024