Influence of Heat Treatment Conditions on the Composition of Cracking Products of Oil Shale from the Kashpir Deposit

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The cracking of oil shale from the Kashpir deposit was studied at various temperatures (425, 450, and 475°C) and process durations (40, 60, 80, and 100 min.). It was shown that the highest yields of liquid products and oils in their composition were achieved at a cracking temperature of 450°C and a duration of 100 min. An increase in the temperature and duration of cracking led to an increase in the concentration of С1–С5 hydrocarbons in the gaseous products by a factor of 2–5. Oils isolated from the liquid products of oil shale cracking consisted of 30–45% polycyclic aromatic hydrocarbons. It was established that an increase in the temperature and duration of cracking led to an increase in the concentration of IBP–360°C fractions in the composition of liquid products.

Sobre autores

M. Mozhayskaya

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: mozhayskaya@ipc.tsc.ru
Tomsk, 634055 Russia

G. Pevneva

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: pevneva@ipc.tsc.ru
Tomsk, 634055 Russia

E. Krivtsov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: john@ipc.tsc.ru
Tomsk, 634055 Russia

P. Pantilov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: 6tinygamer10@gmail.com
Tomsk, 634055 Russia

Bibliografia

  1. Kang Z., Zhao Y., Yang D. // Appl. Energy. 2020. T. 269. P. 115121.
  2. Lu Y., Wang Y., Zhang J., Wang Q., Zhao Y., Zhang Y. // Energy. 2020. V. 200. P. 117529.
  3. Симонов В.Ф., Каширский В.Г., Левушкина Л.В. // Вестн. Саратовск. ун-та. 2008. № 1. С. 77–81.
  4. Рыжов А.Н., Авакян Т.А., Сахарова Е.А., Маслова Л.К., Смоленский Е.А., Лапидус А.Л. // ХТТ. 2013. № 4. С. 29. [Solid Fuel Chemistry. 2013. vol. 47, no. 2, p. 88–97. https://doi.org/10.3103/S0361521913020092]https://doi.org/10.7868/S0023117713020096
  5. Zendehboudi S., Bahadori A. // Gulf Professional Publishing. 2016. 426 p.
  6. Shawabkeh A.Q., Abdulaziz M. // Oil Shale. 2013. V. 30. № 2. P. 173.
  7. Гюльмалиев А.М., Каирбеков Ж.К., Малолетнев А.С., Емельянова В.С., Малтыкбаева Ж.К. // ХТТ. 2013. № 6. С. 49. [Solid Fuel Chemistry. 2013. vol. 47, no. 6, p. 360–364. https://doi.org/10.3103/S0361521913060037]https://doi.org/10.7868/S0023117713060030
  8. Yarboboev T., Sultanov Sh., Aminov F., Navotova D. // Bull. Sci. Pract. 2020. V. 6. No. 7. P. 226.
  9. Можайская М.В., Сурков В.Г., Копытов М.А., Головко А.К. // Журн. Сиб. фед. ун-та. Химия. 2019. Т. 12. № 3. С. 319.
  10. Певнева Г.С., Воронецкая Н.Г., Гринько А.А., Головко А.К. // Нефтехимия. 2016. Т. 56. № 5. С. 461. [Petroleum Chemistry, 2016, vol. 56, no. 8, p. 690–696. https://doi.org/10.1134/S0965544116080144]https://doi.org/10.7868/S0028242116050154

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (152KB)

Declaração de direitos autorais © М.В. Можайская, Г.С. Певнева, Е.Б. Кривцов, П.В. Пантилов, 2023