Abstract
The possibility of implementing an original methodology for studying the kinetics of aggregation of colloidal solutions based on the joint application of dynamic and static light scattering methods is discussed. The theoretical justification of the proposed methodology is based on the concept of fractal dimension and scaling. Its experimental implementation is carried out using the example of the aggregation process of a colloidal gold solution initiated by a change in the ionic strength of the solution. The fractal dimension of Au clusters is determined by the angular and kinetic dependences of static light scattering (SLS). The hydrodynamic radii of clusters are determined by the dynamic light scattering (DLS) method. Based on the experimental results and the formed model dependence of the light scattering intensity on the size of clusters, the kinetic dependence of the concentration of Au clusters is constructed and the rate of their aggregation is estimated. The proposed method can be applied to study the kinetics of aggregation of fractal clusters in various colloidal systems.