Abstract
In ternary fluoropolymers Viton GFLT 600S and Viton GFLT 200S, more types of nanoformations with the size of 3–80 nm are found than in double SCF-26 and SCF-32, while their prehistory changes according to the X-ray diffraction analysis data in the region of large angles. This process is more influenced by the chemical structure of the junctions in the macromolecules than by the molecular weight. The complex and unequal character of change of dynamic viscosity of fluoropolymers with temperature increase is caused by multiple phase transitions. It is shown that fluorocarbon rubber SKF-32 does not transition to the viscous-fluid state up to ~190°C in contrast to three fluoropolymers due to intermolecular nanoformations of 5 nm in size, the strength of which is significantly higher than nanoformations of 3–4 nm in the latter. It was found that the rotational mobility of the TEMPO radical is determined not so much by the intermolecular distances in the disordered part of the copolymers as by the flexibility of the passing chains connecting the ordered formations into a single system.