Solid solutions CaMo(1−x)WxO4: simulation properties and local environment of ions
- Autores: Dudnikova V.B.1, Eremin N.N.1
-
Afiliações:
- Lomonosov Moscow State University
- Edição: Volume 70, Nº 3 (2025)
- Páginas: 391-398
- Seção: КРИСТАЛЛОХИМИЯ
- URL: https://rjmseer.com/0023-4761/article/view/684962
- DOI: https://doi.org/10.31857/S0023476125030052
- EDN: https://elibrary.ru/BEBZVD
- ID: 684962
Citar
Resumo
The simulation of CaMo(1–x)WxO4 solid solutions was carried out using the interatomic potential method. The dependences of the unit cell parameters and volume, density, bulk modulus, enthalpy, vibrational entropy and heat capacity on the composition were determined. The temperature dependences of the heat capacity and vibrational entropy were also plotted. The local structure of solid solutions has been studied. Changes in the coordination polyhedra of CaO8 and the tetrahedra of MoO4 and WO4 with varying concentrations of the solid solution were established. It was shown that in intermediate compositions there is additional distortion of all polyhedra, which may be the reason for the improvement in the spectral characteristics of mixed compositions.
Texto integral

Sobre autores
V. Dudnikova
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: VDudnikova@hotmail.com
Rússia, Moscow, 119991
N. Eremin
Lomonosov Moscow State University
Email: VDudnikova@hotmail.com
Rússia, Moscow, 119991
Bibliografia
- Hu Y., Zhuang W., Ye H. et al. // J. Alloys Compd. 2005. V. 390. P. 226. https://doi.org/10.1016/j.jallcom.2004.07.063
- Dixit P., Chauhan V., Kumar P., Pandey P.C. // J. Lumin. 2020. V. 223. 117240. https://doi.org/10.1016/j.jlumin.2020.117240
- Johnson L.F. // J. Appl. Phys. 1963. V. 34 (4). P. 897. https://doi.org/10.1063/1.1729557
- Zhuang R.Z., Zhang L.Z., Lin Z.B., Wang G.F. // Mat. Res. Innov. 2008. V. 12. P. 62. https://doi.org/10.1179/143307508X304237
- Шилова Г.В., Сироткин А.А., Зверев П.Г. // Квантовая электроника. 2019. Т. 49. С. 570.
- Campos A.B., Simões A.Z., Longo E. et al. // Appl. Phys. Let. 2007. V. 91. 051923. https://doi.org/10.1063/1.2766856
- Mikhailik V.B., Henry S., Kraus H., Solskii I. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 583. P. 350. https://doi.org/10.1016/j.nima.2007.09.020
- Lee S.J., Choi J.H., Danevich F.A. et al. // Astropart. Phys. 2011. V. 34. P. 732. https://doi.org/10.1016/j.astropartphys.2011.01.004
- Angloher G., Bucci C., Christ P. et al. // Astropart. Phys. 2005. V. 23. P. 325. https://doi.org/10.1016/j.astropartphys.2005.01.006
- Gao H., Wang S., Wang Y. et al. // Colloids Surf. A. Physicochem. Eng. Asp. 2022. V. 642. 128642. https://doi.org/10.1016/j.colsurfa.2022.128642
- Han J., McBean C., Wang L. et al. // J. Phys. Chem. C. 2015. V. 119. P 3826. http://dx.doi.org/10.1021/jp512490d
- Баковец В.В., Золотова Е.С., Антонова О.В. и др. // ЖТФ. 2016. T. 86. Вып. 12. С. 111. https://doi.org/10.21883/jtf.2016.12.43924.1511
- Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // ФТТ. 2022. T. 64. Вып. 11. C. 1741. https://doi.org/10.21883/FTT.2022.11.53328.413
- Дудникова В.Б., Жариков Е.В., Еремин Н.Н. // ФТТ. 2019. T. 61. Вып. 4. C. 678. https://doi.org/10.21883/FTT.2019.04.47412.311
- Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // Кристаллография. 2023. Т. 68. № 4. С. 536 https://doi.org/10.31857/S0023476122600550
- Dudnikova V.B., Zharikov E.V., Eremin N.N. // Mater. Today Commun. 2020. V. 23. 101180. https://doi.org/10.1016/j.mtcomm.2020.101180
- Gale J.D. // Z. Kristallogr. 2005. V. 220. P. 552. https://doi.org/10.1524/zkri.220.5.552.65070
- Dick B.G., Overhauser A.W. // Phys. Rev. 1958. V. 112. P. 90. https://doi.org/10.1103/PhysRev.112.90
- Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // ФТТ. 2022. Т. 64. С. 1452. https://doi.org/10.21883/FTT.2022.10.53089.354
- Hazen R.M., Finger L.W., Mariathasan J.W.E. // J. Phys. Chem. Solids. 1985. V. 46. № 2. P. 253. https://doi.org/10.1016/0022-3697(85)90039-3
- Александров В.Б., Горбатый Л.В., Илюхин В.В. // Кристаллография 1968. T. 13. C. 512
- Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. M.: ГЕОС, 2012. 428 с.
- Ferna´ndez-Gonza´lez A., Andara A., Prieto M. // Cryst. Growth Des. 2007. V. 7. № 3. P. 545. https://doi.org/10.1021/cg0606646
- Senyshyn A., Kraus H., Mikhailik V.B. et al. // Phys. Rev. B. 2006. V. 73. 014104. https://doi.org/10.1103/PhysRevB.73.014104
- Weller W.W., King E.G. // U. S. Dept. of the Interior, Bureau of Mines. 1963. 6147.
- Morishita M., Kinoshita Y., Houshiyama H. et al. // J. Chem. Thermodynam. 2017. V. 114. P. 30. https://doi.org/10.1016/j.jct.2017.05.021
- King E.G., Weller W.W. // U. S. Bur. Mines Rept. Invest. 1961. 5791.
- Lyon W.G., Westrum E.F. // J. Chem. Phys. 1968. V. 49. Р. 3374. https://doi.org/10.1063/1.1670609
- Senyshyn A., Kraus H., Mikhailik V.B., Yakovyna V. // Phys. Rev. B. 2004. V. 70. 214306. https://doi.org/10.1103/PhysRevB.70.214306
Arquivos suplementares
