Синтез, кристаллическая структура и спектроскопическое исследование монохлорацетата свинца Pb(ClCH2COO)2
- Авторы: Иванов С.А.1,2, Банару А.М.1,2, Киреев В.Е.2, Чаркин Д.О.1,2, Компанченко А.А.2, Гостева А.Н.2,3, Аксенов С.М.2
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- ФИЦ “Кольский научный центр РАН”
- Мурманский арктический университет
- Выпуск: Том 70, № 3 (2025)
- Страницы: 477-485
- Раздел: СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjmseer.com/0023-4761/article/view/684971
- DOI: https://doi.org/10.31857/S0023476125030148
- EDN: https://elibrary.ru/BCSGSV
- ID: 684971
Цитировать
Аннотация
Кристаллы монохлорацетата свинца Pb(ClCH2COO)2 получены в реакции карбоната свинца и водного раствора хлоруксусной кислоты. Соединение кристаллизуется в моноклинной сингонии (пр. гр. P21/c) с параметрами элементарной ячейки: a = 10.8346(6), b = 7.7239(4), c = 10.1484(5) Å, β = 106.542(5)°. Подобно другим средне- и длинноцепочечным карбоксилатам свинца кристаллическая структура монохлорацетата свинца слоистая. Атомы свинца располагаются в искаженных семивершинниках PbO7, которые обобщают ребра и образуют слои. Обсуждаются особенности кристаллических структур свинцовых солей карбоновых кислот с неразветвленными углеводородными радикалами. В частности, соли н-алкилкарбоксилатов свинца(II) с общей формулой Pb(CnH2n+1COO)2, несмотря на принадлежность к разным сингониям и пространственным группам (моноклинная P21/m для n = 2 и 3, триклинная P для n = 4–9 и моноклинная P21/c для Pb(ClCH2COO)2), характеризуются одинаковым расположением молекул, поэтому их можно считать структурно родственными.
Полный текст

Об авторах
С. А. Иванов
Московский государственный университет им. М.В. Ломоносова; ФИЦ “Кольский научный центр РАН”
Email: aks.crys@gmail.com
Лаборатория арктической минералогии и материаловедения, ФИЦ “Кольский научный центр РАН”
Россия, Москва; АпатитыА. М. Банару
Московский государственный университет им. М.В. Ломоносова; ФИЦ “Кольский научный центр РАН”
Email: aks.crys@gmail.com
Лаборатория арктической минералогии и материаловедения, ФИЦ “Кольский научный центр РАН”
Россия, Москва; АпатитыВ. Е. Киреев
ФИЦ “Кольский научный центр РАН”
Email: aks.crys@gmail.com
Лаборатория арктической минералогии и материаловедения
Россия, АпатитыД. О. Чаркин
Московский государственный университет им. М.В. Ломоносова; ФИЦ “Кольский научный центр РАН”
Email: aks.crys@gmail.com
Лаборатория арктической минералогии и материаловедения, ФИЦ “Кольский научный центр РАН”
Россия, Москва; АпатитыА. А. Компанченко
ФИЦ “Кольский научный центр РАН”
Email: aks.crys@gmail.com
Геологический институт
Россия, АпатитыА. Н. Гостева
ФИЦ “Кольский научный центр РАН”; Мурманский арктический университет
Email: aks.crys@gmail.com
Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева, ФИЦ “Кольский научный центр РАН”
Россия, Апатиты; МурманскС. М. Аксенов
ФИЦ “Кольский научный центр РАН”
Автор, ответственный за переписку.
Email: aks.crys@gmail.com
Лаборатория арктической минералогии и материаловедения; Геологический институт
Россия, АпатитыСписок литературы
- Krivovichev S.V., Mentre O., Siidra O.I. et al. // Chem. Rev. 2013. V. 113. № 8. P. 6459. https://doi.org/10.1021/cr3004696
- Persson I., Lyczko K., Lundberg D. et al. // Inorg. Chem. 2011. V. 50. № 3. P. 1058. https://doi.org/10.1021/ic1017714
- Siidra O.I., Krivovichev S.V., Filatov S.K. // Z. Krist. 2008. V. 223. № 1–2. P. 114. https://doi.org/10.1524/zkri.2008.0009
- Matar S.F., Galy J. // Prog. Solid State Chem. 2015. V. 43. № 3. P. 82. https://doi.org/10.1016/j.progsolidstchem.2015.05.001
- Fiuza-Maneiro N., Sun K., López-Fernández I. et al. // ACS Energy Lett. 2023. V. 8. № 2. P. 1152. https://doi.org/10.1021/acsenergylett.2c02363
- Zhao Y., Zhu K. // Chem. Soc. Rev. 2016. V. 45. № 3. P. 655. https://doi.org/10.1039/C4CS00458B
- Stoumpos C.C., Malliakas C.D., Kanatzidis M.G. // Inorg. Chem. 2013. V. 52. № 15. P. 9019. https://doi.org/10.1021/ic401215x
- Tangboriboon N., Pakdeewanishsukho K., Jamieson A. et al. // Mater. Chem. Phys. 2006. V. 98. № 1. P. 138. https://doi.org/10.1016/j.matchemphys.2005.09.034
- Jachuła J., Kołodyńska D., Hubicki Z. // Can. J. Chem. 2010. V. 88. № 6. P. 540. https://doi.org/10.1139/V10-027
- Shahid M., Pinelli E., Dumat C. // J. Hazard. Mater. 2012. V. 219–220. P. 1. https://doi.org/10.1016/j.jhazmat.2012.01.060
- Hu M.-L., Morsali A., Aboutorabi L. // Coord. Chem. Rev. 2011. V. 255. № 23–24. P. 2821. https://doi.org/10.1016/j.ccr.2011.05.019
- Martínez-Casado F.J., Ramos-Riesco M., Rodríguez-Cheda J.A. et al. // J. Mater. Chem. C. 2014. V. 2. № 44. P. 9489. https://doi.org/10.1039/C4TC01645A
- Martínez-Casado. F.J., Ramos-Riesco M., Rodríguez-Cheda J.A. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. № 26. P. 17009. https://doi.org/10.1039/C7CP02351K
- Warrier A.V.R., Narayanan P.S. // Spectrochim. Acta. A. 1967. V. 23. № 4. P. 1061. https://doi.org/10.1016/0584-8539(67)80029-1
- Filipović I., Bujak A., Vukičević V. // Croat. Chem. Acta. 1970. V. 42. № 3. P. 493.
- Oxford Diffraction. CrysAlisPro. Oxford Diffraction Ltd, Abingdon, Oxfordshire, UK. 2009.
- Palatinus L., Chapuis G. // J. Appl. Cryst. 2007. V. 40. № 4. P. 786. https://doi.org/10.1107/S0021889807029238
- Petricek V., Dusek M., Palatinus L. // Z. Krist. 2014. V. 229. № 5. P. 345. https://doi.org/ 10.1515/zkri-2014-1737
- Petříček V., Palatinus L., Plášil J., Dušek M. // Z. Krist. 2023. V. 238. № 7–8. P. 271. https://doi.org/10.1515/zkri-2023-0005
- Spinner E. // J. Chem. Soc. 1964. P. 4217. https://doi.org/10.1039/jr9640004217
- Bernard M.-C., Costa V., Joiret S. // e-Preservation Sci. 2009. V. 6. P. 101.
- Teixeira-Dias J.J.C., Fausto R. // Pure Appl. Chem. 1989. V. 61. № 5. P. 959. https://doi.org/10.1351/pac198961050959
- Katon J.E., Sinha D. // Spectrochim. Acta. A. 1977. V. 33. № 1. P. 45. https://doi.org/10.1016/0584-8539(77)80146-3
- Jassem N.A., El-Bermani M.F. // Spectrochim. Acta. A. 2010. V. 76. № 2. P. 213. https://doi.org/10.1016/j.saa.2010.03.022
- Hermans J.J., Keune K., van Loon A., Iedema P.D. // J. Anal. At. Spectrom. 2015. V. 30. № 7. P. 1600. https://doi.org/10.1039/C5JA00120J
- Shi Q., Cao R., Hong M.C. et al. // Transit. Met. Chem. 2001. V. 26. P. 657. https://doi.org/10.1023/A:1012008427788
- Mido Y., Kawashita T., Suzuki K. et al. // J. Mol. Struct. 1987. V. 162. № 3–4. P. 169. https://doi.org/10.1016/0022-2860(87)87050-3
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576. https://doi.org/10.1021/cg500498k
- Shevchenko A.P., Shabalin A.A., Karpukhin I.Y., Blatov V.A. // Sci. Technol. Adv. Mater. Methods. 2022. V. 2. № 1. P. 250. https://doi.org/10.1080/27660400.2022.2088041
- Alexandrov E.V., Blatov V.A., Kochetkov A.V., Proserpio D.M. // CrystEngComm. 2011. V. 13. № 12. P. 3947. https://doi.org/10.1039/c0ce00636j
- Martínez-Casado F.J., Ramos-Riesco M., Rodríguez-Cheda J.A. et al. // Inorg. Chem. 2016. V. 55. № 17. P. 8576. https://doi.org/10.1021/acs.inorgchem.6b01116
- O’Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. // Acc. Chem. Res. 2008. V. 41. № 12. P. 1782. https://doi.org/10.1021/ar800124u
- Delgado-Friedrichs O., O’Keeffe M. // Acta Cryst. A. 2003. V. 59. № 4. P. 351. https://doi.org/10.1107/S0108767303012017
- Krivovichev S.V. // Angew. Chem. Int. Ed. 2014. V. 53. № 3. P. 654. https://doi.org/10.1002/anie.201304374
- Krivovichev S.V. // CrystEngComm. 2024. V. 26. № 9. P. 1245. https://doi.org/10.1039/D3CE01230A
Дополнительные файлы
