Expression of tick-borne encephalitis virus nonstructural protein 1 stimulates the secretion of extracellular vesicles capable of activating IL-1β production

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Despite active research, so far the detailed mechanisms of TBEV pathogenesis have not been fully disclosed. Recently, extracellular vesicles, especially small-sized vesicles, which have been shown to play an important role in the pathogenesis of many viruses, have attracted the attention of scientists. In this study, we investigated the effect of nonstructural protein 1 (NS1) expression of tick-borne encephalitis virus on the release of extracellular vesicles by cells, and assessed the possibility of these vesicles affecting other cells. NS1 expression by TBEV was found to increase the release of extracellular vesicles by HEK293T cells; however, no changes in the size profile of released vesicles were detected. In addition, NS1 is detected in both large and small vesicle size fractions. It was found that NS1 TBEV is not present inside the vesicles, but is associated with their outer surface. Small-sized vesicles derived from the culture medium of NS1-expressing HEK293T cells are able to induce an increase in mRNA content and interleukin-1β (IL-1β) secretion in human neuroblastoma SHSY5Y cells. The results indicate the involvement of NS1 protein and vesicles in the development of neuroinflammation and are important for understanding the mechanisms of tick–borne encephalitis virus pathogenesis.

Full Text

Restricted Access

About the authors

Е. S. Starodubova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Author for correspondence.
Email: estarodubova@yandex.ru
Russian Federation, Moscow, 119991

A. A. Latanova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: estarodubova@yandex.ru
Russian Federation, Moscow, 119991

Yu. V. Kuzmenko

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: estarodubova@yandex.ru
Russian Federation, Moscow, 119991

V. I. Popenko

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: estarodubova@yandex.ru
Russian Federation, Moscow, 119991

V. L. Karpov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: estarodubova@yandex.ru
Russian Federation, Moscow, 119991

References

  1. Chiffi G., Grandgirard D., Leib S.L., Chrdle A., Růžek D. (2023) Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture. Rev. Med. Virol. 33, e2470.
  2. Андаев Е.И., Никитин А.Я., Толмачёва М.И., Зарва И.Д., Яцменко Е.В., Матвеева В.А., Сидорова Е.А., Колесникова В.Ю., Балахонов С.В. (2023) Эпидемиологическая ситуация по клещевому вирусному энцефалиту в Российской Федерации в 2022 г. и прогноз ее развития на 2023 г. Проблемы Особо Опасных Инфекций. 6–16.
  3. Pustijanac E., Buršić M., Talapko J., Škrlec I., Meštrović T., Lišnjić D. (2023) Tick-borne encephalitis virus: a comprehensive review of transmission, pathogenesis, epidemiology, clinical manifestations, diagnosis, and prevention. Microorganisms. 11, 1634.
  4. Worku D.A. (2023) Tick-borne encephalitis (TBE): from tick to pathology. J. Clin. Med. 12, 6859.
  5. Fares M., Cochet-Bernoin M., Gonzalez G., Montero-Menei C.N., Blanchet O., Benchoua A., Boissart C., Lecollinet S., Richardson J., Haddad N., Coulpier M. (2020) Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J. Neuroinflammation. 17, 76.
  6. Latanova A., Karpov V., Starodubova E. (2024) Extracellular vesicles in Flaviviridae pathogenesis: their roles in viral transmission, immune evasion, and inflammation. Int. J. Mol. Sci. 25, 2144.
  7. Mishra R., Lata S., Ali A., Banerjea A.C. (2019) Dengue haemorrhagic fever: a job done via exosomes? Emerg. Microbes Infect. 8, 1626.
  8. Zhou W., Woodson M., Neupane B., Bai F., Sherman M.B., Choi K.H., Neelakanta G., Sultana H. (2018) Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 14, e1006764.
  9. Zhou W., Woodson M., Sherman M.B., Neelakanta G., Sultana H. (2019) Exosomes mediate Zika virus transmission through SMPD3 neutral sphingomyelinase in cortical neurons. Emerg. Microbes Infect. 8, 307–326.
  10. Fikatas A., Dehairs J., Noppen S., Doijen J., Vanderhoydonc F., Meyen E., Swinnen J.V., Pannecouque C., Schols D. (2021) Deciphering the role of extracellular vesicles derived from ZIKV-infected hcMEC/D3 cells on the blood-brain barrier system. Viruses. 13, 2363.
  11. Mishra R., Lahon A., Banerjea A.C. (2020) Dengue virus degrades USP33-ATF3 axis via extracellular vesicles to activate human microglial cells. J. Immunol. 205, 1787–1798.
  12. Iacono-Connors L.C., Schmaljohn C.S. (1992) Cloning and sequence analysis of the genes encoding the nonstructural proteins of langat virus and comparative analysis with other flaviviruses. Virology. 188, 875–880.
  13. Mandl C.W., Iacono-Connors L., Wallner G., Holzmann H., Kunz C., Heinz F.X. (1991) Sequence of the genes encoding the structural proteins of the low-virulence tick-borne flaviviruses Langat TP21 and Yelantsev. Virology. 185, 891–895.
  14. Starodubova E., Tuchynskaya K., Kuzmenko Y., Latanova A., Tutyaeva V., Karpov V., Karganova G. (2023) Activation of early proinflammatory responses by TBEV NS1 varies between the strains of various subtypes. Int. J. Mol. Sci. 24, 1011.
  15. Yakovlev A.A., Druzhkova T.A., Stefanovich A., Moiseeva Yu.V., Lazareva N.A., Zinchuk M.S., Rider F.K., Guekht A.B., Gulyaeva N.V. (2023) Elevated level of small extracellular vesicles in the serum of patients with depression, epilepsy and epilepsy with depression. Neurochem. J. 17, 571–583.
  16. Горшков А.Н., Пурвиньш Л.В., Протасов А.В., Некрасов П.А., Шалджян А.А., Васин А.В. (2021) Сравнительный анализ методов выделения экзосом из культуральной среды. Цитология. 63, 193–204.
  17. Zhang S., He Y., Wu Z., Wang M., Jia R., Zhu D., Liu M., Zhao X., Yang Q., Wu Y., Zhang S., Huang J., Ou X., Gao Q., Sun D., Zhang L., Yu Y., Chen S., Cheng A. (2023) Secretory pathways and multiple functions of nonstructural protein 1 in flavivirus infection. Front. Immunol. 14, 1205002.
  18. Perera D.R., Ranadeva N.D., Sirisena K., Wijesinghe K.J. (2024) Roles of NS1 protein in Flavivirus pathogenesis. ACS Infect. Dis. 10, 20–56.
  19. Gelpi E., Preusser M., Garzuly F., Holzmann H., Heinz F.X., Budka H. (2005) Visualization of Central European tick-borne encephalitis infection in fatal human cases. J. Neuropathol. Exp. Neurol. 64, 506–512.
  20. Tang W.-D., Tang H.-L., Peng H.-R., Ren R.-W., Zhao P., Zhao L.-J. (2023) Inhibition of tick-borne encephalitis virus in cell cultures by ribavirin. Front. Microbiol. 14, 1182798.
  21. Peng Y., Yang Y., Li Y., Shi T., Luan Y., Yin C. (2023) Exosome and virus infection. Front. Immunol. 14, 1154217.
  22. Martin C., Ligat G., Malnou C.E. (2023) The Yin and the Yang of extracellular vesicles during viral infections. Biomed. J. 47, 100659.
  23. Welsh J.A., Goberdhan D.C.I., OꞌDriscoll L., Buzas E.I., Blenkiron C., Bussolati B., Cai H., Di Vizio D., Driedonks T.A.P., Erdbrügger U., Falcon-Perez J.M., Fu Q.L., Hill A.F., Lenassi M., Lim S.K., Mahoney M.G., Mohanty S., Möller A., Nieuwland R., Ochiya T., Sahoo S., Torrecilhas A.C., Zheng L., Zijlstra A., Abuelreich S., Bagabas R., Bergese P., Bridges E.M., Brucale M., Burger D., Carney R.P., Cocucci E., Crescitelli R., Hanser E., Harris A.L., Haughey N.J., Hendrix A., Ivanov A.R., Jovanovic-Talisman T., Kruh-Garcia N.A., Kuꞌulei-Lyn Faustino V., Kyburz D., Lässer C., Lennon K.M., Lötvall J., Maddox A.L., Martens-Uzunova E.S., Mizenko R.R., Newman L.A., Ridolfi A., Rohde E., Rojalin T., Rowland A., Saftics A., Sandau U.S., Saugstad J.A., Shekari F., Swift S., Ter-Ovanesyan D., Tosar J.P., Useckaite Z., Valle F., Varga Z., van der Pol E., van Herwijnen M.J.C., Wauben M.H.M., Wehman A.M., Williams S., Zendrini A., Zimmerman A.J.; MISEV Consortium; Théry C., Witwer K.W. (2024) Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles. 13, e12404.
  24. Reyes-Ruiz J.M., Osuna-Ramos J.F., De Jesús-González L.A., Hurtado-Monzón A.M., Farfan-Morales C.N., Cervantes-Salazar M., Bolaños J., Cigarroa-Mayorga O.E., Martín-Martínez E.S., Medina F., Fragoso-Soriano R.J., Chávez-Munguía B., Salas-Benito J.S., Del Angel R.M. (2019) Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res. 266, 1–14.
  25. Fasae K.D., Neelakanta G., Sultana H. (2022) Alterations in arthropod and neuronal exosomes reduce virus transmission and replication in recipient cells. Extracell. Vesicles Circ. Nucl. Acids. 3, 247–279.
  26. Regmi P., Khanal S., Neelakanta G., Sultana H. (2020) Tick-borne flavivirus inhibits sphingomyelinase (IsSMase), a venomous spider ortholog to increase sphingomyelin lipid levels for its survival in Ixodes scapularis ticks. Front. Cell. Infect. Microbiol. 10, 244.
  27. Safadi D.E., Lebeau G., Lagrave A., Mélade J., Grondin L., Rosanaly S., Begue F., Hoareau M., Veeren B., Roche M., Hoarau J.J., Meilhac O., Mavingui P., Desprès P., Viranaïcken W., Krejbich-Trotot P. (2023) Extracellular vesicles are conveyors of the NS1 toxin during Dengue virus and Zika virus infection. Viruses. 15, 364.
  28. Puerta-Guardo H., Glasner D.R., Harris E. (2016) Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog. 12, e1005738.
  29. Puerta-Guardo H., Glasner D.R., Espinosa D.A., Biering S.B., Patana M., Ratnasiri K., Wang C., Beatty P.R., Harris E. (2019) Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism. Cell Rep. 26, 1598‒1613.e8.
  30. Lo N.T.N., Roodsari S.Z., Tin N.L., Wong M.P., Biering S.B., Harris E. (2022) Molecular determinants of tissue specificity of flavivirus nonstructural protein 1 interaction with endothelial cells. J. Virol. 96, e0066122.
  31. Latanova A., Starodubova E., Karpov V. (2022) Flaviviridae nonstructural proteins: the role in molecular mechanisms of triggering inflammation. Viruses. 14, 1808.
  32. Benfrid S., Park K.H., Dellarole M., Voss J.E., Tamietti C., Pehau-Arnaudet G., Raynal B., Brûlé S., England P., Zhang X., Mikhailova A., Hasan M., Ungeheuer M.N., Petres S., Biering S.B., Harris E., Sakuntabhai A., Buchy P., Duong V., Dussart P., Coulibaly F., Bontems F., Rey F.A., Flamand M. (2022) Dengue virus NS1 protein conveys pro‐inflammatory signals by docking onto high‐density lipoproteins. EMBO Rep. 23, e53600.
  33. Modhiran N., Watterson D., Muller D.A., Panetta A.K., Sester D.P., Liu L., Hume D.A., Stacey K.J., Young P.R. (2015) Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl. Med. 7, 304ra142.
  34. Sung P.-S., Huang T.-F., Hsieh S.-L. (2019) Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nat. Commun. 10, 2402.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Immunoblotting of HEK293T cells (lanes 1 and 8) transfected with pVax (lanes 1–6) or pVax-NS1 (lanes 8–13) and culture medium fractions obtained by differential centrifugation at 500 g (lanes 2 and 9), 3000 g (lanes 3 and 10), 10,000 g (lanes 4, 5 and 11, 12) and pelleting with a commercial reagent (lanes 6 and 13). The position of the molecular weight marker bands (lanes 7 and 14) is indicated on the right.

Download (15KB)
3. Fig. 2. Localization of NS1 in vesicles of different sizes. a – Immunoblotting of HEK293T cells (lanes 1 and 6) transfected with pVax (lanes 1–4) or pVax NS1 (lanes 6–9) and fractions obtained by differential centrifugation of the culture medium at 3,000 g (lanes 2 and 7), 10,000 g (lanes 3 and 8) and by precipitation with a commercial reagent (lanes 4 and 9). The position of the molecular mass marker bands (lane 5) is indicated on the right. b – Immunoblotting of the fraction of small extracellular vesicles treated with proteinase K with or without Triton X-100.

Download (12KB)
4. Fig. 3. Analysis of the fraction of small vesicles obtained with a commercial reagent from the culture medium of HEK293T cells transfected with the pVax plasmid or the pVax plasmid encoding NS1. a – Granulometry profile of vesicle preparations obtained on the basis of dynamic light scattering analysis (distribution of light scattering intensity (intensity, %) by hydrodynamic diameters (size, nm)). b – Granulometry profile of vesicle preparations obtained on the basis of nanoparticle trajectory analysis. c – Micrograph of small vesicle preparations obtained using transmission electron microscopy.

Download (27KB)
5. Fig. 4. Gel filtration on Sepharose CL-2B of small vesicle fractions and proteins from the medium of cells transfected with the pVax vector or plasmid encoding NS1. a – Elution profile of small vesicles (particle concentration in fractions measured by NTA) and proteins (protein concentration according to Bradford). b – Dot blot analysis of fractions with antibodies to NS1 (clone 4C4). Fraction numbers are given at the top and on the sides.

Download (18KB)
6. Fig. 5. Analysis of the vesicle fraction obtained by gel filtration on a Sepharose CL-2B column from the culture medium of HEK293T cells transfected with the pVax plasmid or the pVax plasmid encoding NS1. a – Granulometry profile of vesicle preparations obtained on the basis of dynamic light scattering analysis (distribution of light scattering intensity (intensity, %) by hydrodynamic diameters (size, nm)). b – Granulometry profile of vesicle preparations obtained by nanoparticle tracking analysis. c – Micrographs of vesicle preparations of pVax (left) and NS1 (right) samples obtained using transmission electron microscopy. d – Immunoblotting of vesicle preparations of NS1 samples (lane 1) with antibodies to NS1, TSG101, and GM130. The position of the molecular mass marker bands (lane 2) is shown on the right.

Download (31KB)
7. Fig. 6. Effect of extracellular vesicles on SHSY5Y neuroblastoma cells. Relative content of mRNA (a) and IL-1β secreted into the medium (b). Statistically significant differences p < 0.05 (*).

Download (11KB)

Copyright (c) 2025 Russian Academy of Sciences