Никельфосфидный катализатор на основе мезопористого наносферического полимера в процессе гидрирования гваякола и фурфурола

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Получен нанесенный никельфосфидный катализатор in situ в условиях синтеза мезопористого резорцинформальдегидного полимера. Катализатор испытан в гидрировании гваякола и фурфурола в толуоле при давлении водорода 4 МПа. Исследованы характеристики гидрирования фурфурола в зависимости от давления водорода, массы загруженного катализатора, температуры и продолжительности процесса. Оценена активность полученного никельфосфидного катализатора в гидрировании смеси гваякола и фурфурола в толуоле.

Texto integral

Acesso é fechado

Sobre autores

Искандер Шакиров

Московский государственный университет имени М. В. Ломоносова

Autor responsável pela correspondência
Email: sammy-power96@yandex.ru
ORCID ID: 0000-0003-2029-693X

химический факультет

Rússia, Москва, 119991

Максим Бороноев

Московский государственный университет имени М. В. Ломоносова

Email: sammy-power96@yandex.ru
ORCID ID: 0000-0001-6129-598X

химический факультет; к. х. н.

Rússia, Москва, 119991

Екатерина Ролдугина

Московский государственный университет имени М. В. Ломоносова

Email: sammy-power96@yandex.ru
ORCID ID: 0000-0002-9194-1097

химический факультет; к. х. н. 

Rússia, Москва, 119991

Юлия Кардашева

Московский государственный университет имени М. В. Ломоносова

Email: sammy-power96@yandex.ru
ORCID ID: 0000-0002-6580-1082

химический факультет; к. х. н. 

Rússia, Москва, 119991

Сергей Кардашев

Московский государственный университет имени М. В. Ломоносова

Email: sammy-power96@yandex.ru
ORCID ID: 0000-0003-1818-7697

химический факультет; к. х. н. 

Rússia, Москва, 119991

Bibliografia

  1. Lu Q., Li W.-Z., Zhu X.-F. Overview of fuel properties of biomass fast pyrolysis oils // Energy Convers. Manage. 2009. V. 50, № 5. P. 1376–1383. https://doi.org/10.1016/j.enconman.2009.01.001
  2. Jin W., Pastor-Pérez L., Shen D., Sepúlveda-Escribano A., Gu S., Ramirez Reina T. Catalytic upgrading of biomass model compounds: novel approaches and lessons learnt from traditional hydrodeoxygenation — a review // ChemCatChem. 2019. V. 11, № 3. P. 924–960. https://doi.org/10.1002/cctc.201801722
  3. Ouedraogo A.S., Bhoi P.R. Recent progress of metals supported catalysts for hydrodeoxygenation of biomass derived pyrolysis oil // J. Clean. Prod. 2020. V. 253. ID119957. https://doi.org/10.1016/j.jclepro.2020.119957
  4. Qu L., Jiang X., Zhang Z., Zhang X.-G., Song G.-Y., Wang H.-L., Yuan Y.-P., Chang Y.-L. A review of hydrodeoxygenation of bio-oil: model compounds, catalysts, and equipment // Green Chem. 2021. V. 23, № 23. P. 9348–9376. https://doi.org/10.1039/D1GC03183J
  5. Gollakota A.R.K., Shu C.-M., Sarangi P.K., Shadangi K.P., Rakshit S., Kennedy J.F., Gupta V.K., Sharma M. Catalytic hydrodeoxygenation of bio-oil and model compounds — choice of catalysts, and mechanisms // Renew. Sustain. Energy Rev. 2023. V. 187. ID113700. https://doi.org/10.1016/j.rser.2023.113700
  6. Kim S., Kwon E.E., Kim Y.T., Jung S., Kim H.J., Huber G.W., Lee J. Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts // Green Chem. 2019. V. 21, № 14. P. 3715–3743. https://doi.org/10.1039/C9GC01210A
  7. Yao G., Wu G., Dai W., Guan N., Li L. Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions // Fuel. 2015. V. 150. P. 175–183. https://doi.org/10.1016/j.fuel.2015.02.035
  8. Golubeva M.A., Maximov A.L. Transition metal compounds in the hydrodeoxygenation of biomass derivatives // Renew. Sustain. Energy Rev. 2025. V. 210. ID115153. https://doi.org/10.1016/j.rser.2024.115153
  9. Бороноев М.П., Шакиров И.И., Ролдугина Е.А., Кардашева Ю.С., Кардашев С.В., Максимов А.Л., Караханов Э.А. Гидрирование гваякола на наноразмерных рутениевых нанесенных катализаторах: влияние размера частиц носителя и присутствия оксигенатов бионефти// Журн. прикл. химии. 2022. Т. 95, № 10. С. 1263–1272. http://doi.org/10.31857/S004446182210005X [Boronoev M.P., Shakirov I.I., Roldugina E.A., Kardasheva Y.S., Kardashev S.V., Maksimov A.L., Karakhanov E.A. Hydrogenation of guaiacol on nanoscale supported ruthenium catalysts: influence of support particle size and the presence of bio-oil oxygenates // Russ. J. Appl. Chem. 2022. V. 95, № 10. P. 1555–1563. https://doi.org/10.1134/S1070427222100068]
  10. Liang C., Li Z., Dai S. Mesoporous carbon materials: synthesis and modification // Angew. Chem. Int. Ed. 2008. V. 47, № 20. P. 3696–3717. https://doi.org/10.1002/anie.200702046
  11. Wei J., Liang Y., Zhang X., Simon G.P., Zhao D., Zhang J., Jiang S., Wang H. Controllable synthesis of mesoporous carbon nanospheres and Fe–N/carbon nanospheres as efficient oxygen reduction electrocatalysts // Nanoscale. 2015. V. 7, № 14. P. 6247–6254. https://doi.org/10.1039/C5NR00331H
  12. Peroni M., Lee I., Huang X., Baráth E., Gutiérrez O.Y., Lercher J.A. Deoxygenation of palmitic acid on unsupported transition-metal phosphides // ACS Catal. 2017. V. 7, № 9. P. 6331–6341. https://doi.org/10.1021/acscatal.7b01294
  13. Golubeva M.A., Maximov A.L. Hydroprocessing of furfural over in situ generated nickel phosphide based catalysts in different solvents // Appl. Catal. A: Gen. 2020. V. 608. ID117890. https://doi.org/10.1016/j.apcata.2020.117890
  14. Wu S.-K., Lai P.-C., Lin Y.-C. Atmospheric hydrodeoxygenation of guaiacol over nickel phosphide catalysts: effect of phosphorus composition // Catal. Lett. 2014. V. 144, № 5. P. 878–889. https://doi.org/10.1007/s10562-014-1231-7
  15. Cecilia J.A., Infantes-Molina A., Rodríguez-Castellón E., Jiménez-López A. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene // J. Catal. 2009. V. 263, № 1. P. 4–15. https://doi.org/10.1016/j.jcat.2009.02.013
  16. Bui P., Cecilia J.A., Oyama S.T., Takagaki A., Infantes-Molina A., Zhao H., Li D., Rodríguez-Castellón E., Jiménez López A. Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound // J. Catal. 2012. V. 294. P. 184–198. https://doi.org/10.1016/j.jcat.2012.07.021
  17. Wang R., Smith K.J. The effect of preparation conditions on the properties of high-surface area Ni2P catalysts // Appl. Catal. A: Gen. 2010. V. 380, № 1‒2. P. 149–164. https://doi.org/10.1016/j.apcata.2010.03.055
  18. Dai X., Song H., Yan Z., Li F., Chen Y., Wang X., Yuan D., Zhang J., Wang Y. Effect of preparation temperature on the structures and hydrodeoxygenation performance of Ni2P/C catalysts prepared by decomposition of hypophosphites // New J. Chem. 2018. V. 42, № 24. P. 19917–19923. https://doi.org/10.1039/C8NJ04628J
  19. d’Aquino A. I., Danforth S.J., Clinkingbeard T.R., Ilic B., Pullan L., Reynolds M.A., Murray B.D., Bussell M.E. Highly-active nickel phosphide hydrotreating catalysts prepared in situ using nickel hypophosphite precursors // J. Catal. 2016. V. 335. P. 204–214. https://doi.org/10.1016/j.jcat.2015.12.006
  20. Li Y., Fu J., Chen B. Highly selective hydrodeoxygenation of anisole, phenol and guaiacol to benzene over nickel phosphide // RSC Adv. 2017. V. 7, № 25. P. 15272–15277. https://doi.org/10.1039/C7RA00989E
  21. Gonçalves V.O.O., de Souza P.M., Cabioc’h T., da Silva V.T., Noronha F.B., Richard F. Hydrodeoxygenation of m-cresol over nickel and nickel phosphide based catalysts. Influence of the nature of the active phase and the support // Appl. Catal. B: Environ. 2017. V. 219. P. 619–628. https://doi.org/10.1016/j.apcatb.2017.07.042
  22. Шакиров И.И., Бороноев М.П., Кардашев С.В., Путилин Ф.Н., Караханов Э.А. Селективное гидрирование фенола с использованием нанесенного на мезопористый наносферический полимер Ni2P-катализатора // Наногетерогенный катализ. 2021. Т. 6, № 2. С. 92–99. https://doi.org/10.56304/S2414215821020076 [Shakirov I.I., Boronoev M.P., Kardashev S.V., Putilin F.N., Karakhanov E.A. Selective hydrogenation of phenol using a Ni2P catalyst supported on mesoporous polymeric nanospheres // Petrol. Chem. 2021. V. 61, № 10. P. 1111–1117. https://doi.org/10.1134/S0965544121100042]

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Micrograph (a) and size distribution of spherical particles (b) of mesoporous resorcinol-formaldehyde polymer.

Baixar (139KB)
3. Fig. 2. Nitrogen adsorption–desorption isotherm of mesoporous resorcinol-formaldehyde polymer.

Baixar (63KB)
4. Fig. 3. Diffraction pattern of a nickel phosphide catalyst deposited on a mesoporous polymer.

Baixar (76KB)
5. Fig. 4. Micrograph of a nickel phosphide catalyst deposited on a mesoporous polymer (a) and the size distribution of Ni2P nanoparticles (b).

Baixar (168KB)
6. Fig. 5. Spectra of temperature-programmed desorption of ammonia from a mesoporous polymer and a nickel phosphide catalyst.

Baixar (86KB)
7. Fig. 6. Deconvolutions of Ni2p (a) and P2p (b) X-ray photoelectron spectra of nickel phosphide catalyst.

Baixar (143KB)
8. Fig. 7. Conversion of furfural and selectivity of formation of its hydrogenation products in the presence of nickel phosphide catalyst depending on: (a) — temperature; (b) — hydrogen pressure; (c) — catalyst loading; (d) — duration of the hydrogenation process. *Reaction conditions: 50 μl furfural, 2 ml toluene, then for: (a) — 11 mg catalyst, 4 MPa H2, 4 h; (b) — 11 mg catalyst, 200°C, 4 h; (c) — 4 MPa H2, 200°C, 4 h; (d) — 4 MPa H2, 200°C, 11 mg catalyst.

Baixar (257KB)
9. Fig. 8. Conversion of guaiacol and selectivity of formation of its hydrogenation products in the presence of nickel phosphide catalyst depending on: (a) — hydrogenation temperature; (b) — duration of the hydrogenation process. Reaction conditions: 100 μl guaiacol, 2 ml toluene, 25 mg catalyst, 4 MPa H2.

Baixar (171KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025