Mathematical modeling of binary coalescence process of oil-water emulsion droplets
- Autores: Kiselev S.A.1, Poluboyartsev D.S.1, Dolgov I.R.1, Litvinets I.V.1, Yashchuk A.A.2, Belinskaya N.S.3
-
Afiliações:
- JSC TomskNIPIneft
- National Research Tomsk State University
- National Research Tomsk Polytechnic University
- Edição: Volume 59, Nº 2 (2025)
- Páginas: 100-110
- Seção: Articles
- ##submission.datePublished##: 04.09.2025
- URL: https://rjmseer.com/0040-3571/article/view/689820
- DOI: https://doi.org/10.31857/S0040357125020091
- EDN: https://elibrary.ru/ndsgts
- ID: 689820
Citar
Texto integral



Resumo
The paper presents an attempt to form a general approach to mathematical modeling of binary coalescence arising due to droplet deposition in a gravitational field based on the population balance equation, which can be further applied to predict the conditions of oil-water emulsion stratification. Using experimental curves of water content change over time in water-in-oil emulsions measured at different temperatures, four different ways of calculating the efficiency of binary coalescence are compared.
Palavras-chave
Texto integral

Sobre autores
S. Kiselev
JSC TomskNIPIneft
Autor responsável pela correspondência
Email: kiselevsa@tomsknipi.ru
Rússia, Tomsk
D. Poluboyartsev
JSC TomskNIPIneft
Email: kiselevsa@tomsknipi.ru
Rússia, Tomsk
I. Dolgov
JSC TomskNIPIneft
Email: kiselevsa@tomsknipi.ru
Rússia, Tomsk
I. Litvinets
JSC TomskNIPIneft
Email: kiselevsa@tomsknipi.ru
Rússia, Tomsk
A. Yashchuk
National Research Tomsk State University
Email: kiselevsa@tomsknipi.ru
Rússia, Tomsk
N. Belinskaya
National Research Tomsk Polytechnic University
Email: kiselevsa@tomsknipi.ru
Rússia, Tomsk
Bibliografia
- Дунюшкин И.И. Сбор и подготовка скважинной продукции нефтяных месторождений. М.: Изд-во Нефть и газ РГУ им. И.М. Губкина, 2006.
- Байков Н.М., Позднышев Г.Н., Мансуров Р.И. Сбор и промысловая подготовка нефти, газа и воды. М.: Недра, 1981.
- Зейгман Ю.В., Колонских А.В. Оптимизация работы УЭЦН для предотвращения образований осложнений // Нефтегазовое дело. 2005. № 2. С. 1.
- Лутошкин Г.С. Сбор и подготовка нефти, газа и воды. М.: ТИД Альянс, 2005.
- Politova N.I., Tcholakova S., Tsibranska S., Denkov N.D., Muelheims K. Coalescence stability of water-in-oil drops: effects of drop size and surfactant concentration // Colloids Surf., A: Physicochem. Eng. Asp. 2017. V. 531. № 20. P. 32.
- Basheva E.S., Gurkov T.D., Ivanov I.B., Bantchev G.B., Campbell B., Borwankar R.P. Size Dependence of the stability of emulsion drops pressed against a large interface // Langmuir. 1999. V. 15. P. 6764.
- Koots J.A., Speight J.G. Relation of petroleum resins to asphaltenes // Fuel. 1975 V. 54. № 3. P. 179.
- Gafonova O., Yarranton H. The stabilization of water-in-hydrocarbon emulsions by asphaltenes and resins // J. Colloid Interface Sci. 2001 V. 241. № 2 P. 469.
- Lixin X., Shiwei L., Guoying C. Stability and demulsification of emulsions stabilized by asphaltenes or resins // J. Colloid Interface Sci. 2004. V. 271. № 2. P. 504.
- Czarnecki J. Stabilization of water in crude oil emulsions. Part 2 // Energy & Fuels. 2009. V. 23. № 3. P. 1253.
- Pickering S. Emulsions // Journal of the chemical society. Transactions. 1907. V. 91 P. 2001.
- Sztukowski D., Yarranton H. Oilfield solids and water-in-oil emulsion stability // J. Colloid Interface Sci. 2005. V. 285. № 2. P. 821.
- Jennings H.I. A study of caustic solution crude oil interfacial tensions // Soc. Petrol. Eng. J. 1975 V. 15. № 3. P. 197.
- Parker R.J., Chung E.S.N. Acid numbers of Saskatchewan heavy oils // J. Can. Pet. Technol. 1986. V. 25. № 4. P. 72.
- Acevedo S., Gastón E., Luis G., Hercilio R. Isolation and characterization of natural surfactants from extra heavy crude oils, asphaltenes and maltenes. Interpretation of their interfacial tension-pH behaviour in terms of ion pair formation // Fuel. 1992. V. 71. № 6. P. 619.
- Chan M., Yen T. A. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt // Can. J. Chem. Eng. 1982 V. 60. № 2. P. 305.
- Moeini F., Hemmati-Sarapardeh A., Ghazanfari M.H., Masihi M., Ayatollahi S. Toward mechanistic understanding of heavy crude oil/brine interfacial tension: the roles of salinity, temperature and pressure // Fluid Phase Equilibr. 2014. V. 375. P. 191.
- Mohammed R., Bailey A., Luckham P., Taylor S. Dewatering of crude oil emulsions 1. Rheological behaviour of the crude oil-water interface // Colloids Surf., A: Physicochem. Eng. Asp. 1993. V. 80. № 2. P. 223.
- Tchoukov P., Yang F., Xu Z., Dabros T., Czarnecki J. Role of asphaltenes in stabilizing thin liquid emulsion films // Langmuir. 2014. V. 30 P. 3024.
- Tchoukov P., Czarnecki J., Dabros T. Study of water-in-oil thin liquid films: Implications for the stability of petroleum emulsions // Colloids Surf., A: Physicochem. Eng. Asp. 2010. V. 372. P. 15.
- Wu X. Investigating the stability mechanism of water-in-diluted bitumen emulsions through isolation and characterization of the stabilizing materials at the interface // Energy & Fuels. 2003 V. 17. P. 179.
- Czarnecki J., Tchoukov P., Dabros T., Xu Z. Role of asphaltenes in stabilisation of water in crude oil emulsions // Jan. Can. J. Chem. Eng. 2013. V. 91. P. 1365.
- Tourbin M., Frances C. Experimental characterization and population balance modelling of the dense silica suspensions aggregation process // Chem. Eng. Sci. 2008. V. 63. P. 5239.
- Kralova I., Sjöblom J., Øye G., Simon S., Grimes B.A., Paso K. Heavy crude oils/particle stabilized emulsions // Adv. Colloid Interface Sci. 2011. V. 169. P. 106.
- Cunha R.E.P., Fortuny M., Dariva C., Santos A.F. Mathematical modeling of the destabilization of crude oil emulsions using population balance equation, Ind. Eng. Chem. Res. 2008. V. 47. P. 7094.
- Grimes B.A. Population balance model for batch gravity separation of crude oil and water emulsions. Part I: Model Formulation // J. Dispers. Sci. Technol. 2012. V. 33 P. 578.
- Attarakih M.M., Bart H.J., Faqir N.M. Numerical solution of the spatially distributed population balance equation describing the hydrodynamics of interacting liquid-liquid dispersion // Chem. Eng. Sci. 2004. V. 59 P. 256.
- Misra A., de Souza L.G.M., Illner M., Hohl L., Kraume M., Repke J.-U., Thévenin D. Simulating separation of a multiphase liquid-liquid system in a horizontal settler by CFD // Chem. Eng. Sci. 2017. V. 167. P. 242.
- Oshinowo L. M., Vilagines R. D. Modeling of oil–water separation efficiency in three-phase separators: Effect of emulsion rheology and droplet size distribution // Chem. Eng. Res. Des. 2020. V. 159. P. 278.
- Kuma S., Ramkrishna D. On the solution of population balance equations by discretization I. A fixed pivot technique // Chem. Eng. Sci. 1996. V. 51. P. 1311.
- Rowe P.N. A convenient empirical equation for estimation of the Richarson-Zaki exponent // Chem. Eng. Sc. 1987. V. 42. № 11. P. 2795.
- Turton R., Levenspiel O. A short note on the drag correlation for spheres // Powder Technol.1986. V. 47. № 1. P. 83.
- Hartman M. Predicting the free-fall velocities of spheres // Chem. Eng. Sci. 1989. V. 44. № 8. P. 1743.
- Turton R., Clark N.N. An explicit relationship to predict spherical particle terminal velocity // Powder Technol. 1987. V. 53. P. 127.
- Handbook on Theory and Practice of Bitumen Recovery from Athabasca Oil Sands, Volume 1: Theoretical Basis/ Eds.Masliyah, J.H., Czarnecki, J., Xu, Z., Kingsley Knowledge Publishing, 2011.
- Liao Y., Lucas D. A Literature review on mechanisms and models for the coalescence process of fluid particles// Chem. Eng. Sci. 2010. V. 65. P. 2851.
- Kamp A.M., Chesters A.K. Bubble coalescence in turbulent flows: A mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow // Int. J. Multiph. Flow. 2010. V. 27. P. 1363.
- Coulaloglou C.A. Dispersed phase interactions in an agitated flow vessel. Ph.D. Diss. Chicago, 1975.
- Yanru S., Sjöblom J. Interfacial shear rheology of asphaltenes at oil–water interface and its relation to emulsion stability: Influence of concentration, solvent aromaticity and nonionic surfactant // Colloids Surf., A: Physicochem. Eng. Asp. 2010. V. 366. № 1. P. 120.
- Dabros T., Yeung A., Masliyah J., Czarnecki J. Emulsification through area contraction // J. Colloid Interface Sci. 1999. V. 210. P. 222.
- McLean J., Kilpatrick P. Effects of asphaltene aggregation in model heptane toluene mixtures on stability of water-in-oil emulsions. // J. Colloid Interface Sci. 1997. V. 196. № 1. P. 23.
Arquivos suplementares
