Ethane dehydrogenation in a membrane reactor with palladium alloy foil Pd–Ru with alumina-chromium catalyst at high temperatures
- Авторлар: Babak V.N.1, Didenko L.P.1, Sementsova L.A.1, Kvurt Y.P.1, Zakiev S.Е.1
-
Мекемелер:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- Шығарылым: Том 59, № 1 (2025)
- Беттер: 62–76
- Бөлім: Articles
- ##submission.datePublished##: 02.07.2025
- URL: https://rjmseer.com/0040-3571/article/view/686515
- DOI: https://doi.org/10.31857/S0040357125010083
- EDN: https://elibrary.ru/txxgbs
- ID: 686515
Дәйексөз келтіру
Аннотация
Ethane dehydrogenation is one of the most important processes for ethylene production. The main regularities of this process have been studied in a membrane reactor with an industrial alumina-chromium catalyst and a Pd-6%Ru palladium alloy foil. The working part of the reactor consists of two cylindrical chambers separated by a membrane partition. The upper chamber is vacuumed and the lower chamber is kept at atmospheric pressure. It is known that hydrogen additives at the inlet prevent the formation of carbon deposits on the catalyst, so in this work the effect of these additives on the process was investigated. With uniform feedstock supply (ethane and hydrogen) along the outer perimeter of the lower chamber, the problem is reduced to finding the fluxes of ethane, ethylene, hydrogen and methane from the solution of a system of nonlinear ordinary differential equations. The temperature interval 600 K < T < 1000 K at small values of hydrogen and ethane flux ratios at the inlet is considered. The conditions under which hydrogen yield and ethane conversion reach 100% at maximum flux H2 through the membrane are found. Calculations are compared with experimental data.
Негізгі сөздер
Толық мәтін

Авторлар туралы
V. Babak
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: tabor47@mail.ru
Ресей, Chernogolovka
L. Didenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: tabor47@mail.ru
Ресей, Chernogolovka
L. Sementsova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: tabor47@mail.ru
Ресей, Chernogolovka
Yu. Kvurt
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: tabor47@mail.ru
Ресей, Chernogolovka
S. Zakiev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: tabor47@mail.ru
Ресей, Chernogolovka
Әдебиет тізімі
- James O.O., Mandal S., Alele N., Chowdhury B., Maity S. Lower alkanes dehydrogenation: Strategies and reaction routes to corresponding alkenes // Fuel Process. Technol. 2016. V. 149. P. 239.
- Sattler J.J.H.B., Ruiz-Martinez J., Santillan-Jemenez E., Weckhuysen B.M. Catalytic dehydrogenation of light alkanes on metals and metal oxides // Chem. Rev. 2014. V. 114. P. 10613.
- Ramachandran R., Menon R.K. An overview of industrial uses of hydrogen // Int. J. Hydrogen Energy. 1998. V. 23. P. 593.
- Филиппов С.П., Ярославцев А.Б. Водородная энергетика: перспективы развития и материалы // Успехи химии. 2021. Т. 90. № 6. С. 627.
- Bang Y., Han S.J., Yoo J., Park S., Choi J.H., Lee Y.J., Song J.H., Song I.K. Hydrogen production by stream reforming of liquefied natural gas (LNG) over mesoporous nickel-phosphorus-alumina aerogel catalyst // Int. J. Hydrogen Energy. 2014. V. 39. P. 4909.
- Кириллов В.А., Амосов Ю.И., Шигаров А.Б., Кузин Н.А., Киреенков В.В., Пармон В.Н., Аристович Ю.В., Грицай М.А., Светов А.А. Экспериментальное и теоретическое исследование процесса переработок попутного нефтяного газа в нормализованной газ посредством мягкого парового риформинга // Теорет. основы хим. технол. 2017. Т. 51. № 1. С. 15.
- Gryaznov V.M. Hydrogen permeable palladium membrane catalyst. An aid to the efficient production of ultra pure chemicals and pharmaceuticals // Palladium Met. Rev. 1986. V. 36. P. 68.
- Itoh N. Inorganic membranes for reaction and separation // AIChE J. 1987. V. 33. P. 1576.
- Gärtner C.A., Van Veen A.C., Lercher J.A. Oxidative dehydrogenation of ethane: Common principles and mechanistic aspects // ChemCatChem. 2013. V. 5. P. 3196.
- Lobera M.P., Escolástico S., Serra J.M. High ethylene production through oxidative dehydrogenation of ethane membrane reactors based on fast oxygen-ion conductors // ChemCatChem. 2011. V. 3. P. 1503.
- Yun Y.S., Lee M., Sung J., Yun D., Kim T.Y., Park H., Lee K.R., Song C.K., Kim Y., Lee J., Seo Y.-J., Song I.K., Yi J. Promoting effect of cerium on MoVTeNb mixed oxide catalyst for oxidative dehydrogenation of ethane to ethylene // Applied Catalysis B. 2018. V. 237. P. 554.
- Melzer D., Mestl G., Wanninger K., Zhu Y., Browning N.D., Sanchez-Sanchez M., Lercher J.A., Design and synthesis of highly active MoVTeNb-oxydes for ethane oxidative dehydrogenation // Nature Commun. 2019. V. 5. № 10(1). P. 4012.
- Xin C, Wang F., Xu G.Q. Tuning surface V5+ concentration in M1 phase MoVSbOx catalysis for ethane production through oxidative dehydrogenation reaction // Applied Catalysis A General. 2021. V. 610. Article 117946.
- Ding W., Zhao K., Jiang S., Zhao Z., Cao Y., He F. Alkali-metal enhanced LaMoO3 perovskite oxides for chemical looping oxidative dehydrogenation of ethane // Applied Catalysis A General. 2021. V. 609. Article 117910.
- Орехова Н.В., Кустов Л.М., Кучеров А.В., Финашина Е.Д., Ермилова М.М., Ярославцев А.Б. Мембранyые каталитические системы для конверсии алканов С2–С4 // Российские нанотехнологии. 2012. Т. 7. № 11-12. С. 21.
- Galvita V., Siddiqi G., Sun P., Bell A.T. Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts // J. Catal. 2010. V. 271. P. 209.
- Sun P., Siddiqi G., Vining W.C., Chi M., Bell A.T. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation // J. Catal. 2011. V. 282. P. 165.
- Пономарев А.Б., Писаренко Е.В., Шестаковский М.В., Пашян А.С., Сорокина П.Д. Анализ и моделирование процесса депарафинизации углеводородного сырья на цеолитах типа MFI // ММТТ. 2023. № 11. C. 37.
- Nayebossadri S., Speight D., Book D. Pd–Cu–M (M = Y, Ti, Zr, V, Nb and Ni) alloys for the hydrogen separation membrane // ACS Appl. Mater Interfaces. 2017. V. 9. P. 2650.
- Slovetsky D.I., Chistov E.M. Patent 2416460. 2011.
- Burkhanov G.S., Gorina N.B., Kolchugina N.B., Roshan N.R., Slovetsky D.I., Christov E.M. Palladium-based alloy membranes for separations of high purity hydrogen from hydrogen-containing gas mixtures // Platinum Met. Rev. 2011. V. 55. № 1. P. 3.
- Pizzi D., Worth R., Baschetti M.G., Sarfi G.C., Noda K. Hydrogen permeability of 2.5 µm palladium–silver membranes deposited on ceramic supports // J. Membr. Sci. 2008. V. 325. № 1. P. 446.
- Tong J., Shirai R., Kashima Y., Matsumura Y. Preparation of a pinhole-free Pd–Ag membrane on a porous metal support for pure hydrogen separation // J. Membr. Sci. 2005. V. 260. № 1. P. 84.
- Li A., Grace J., Lim J.C. Preparation of thin Pd-based composite membrane on planar metallic substrate: Part II. Preparation of membranes by electroless plating and characterization // J. Membr. Sci. 2007. V. 306. P. 159.
- Itoh N., Akiha T., Sato T. Preparation of thin palladium composite membrane tube by CVD technique and its hydrogen permselectivity // Catal. Today. 2005. V. 104. P. 231.
- Mattox D.M. Handbook of Physical Vapor Deposition (PVD) Processing. Elsevier. 2010. P. 195.
- Galuszka J., Giddings T., Clelland I. Catalytic dehydrogenation of ethane in hydrogen membrane reactor, in “Inorganic membranes for energy and environmental applications”, Ed. by A.C. Bose (Springer Berlin), 2009. P. 299.
- Li X., Li A., Lim C.J., Grace J.R. Hydrogen permeation through Pd-based composite membranes: Effects on porous substrate, diffusion barrier and sweep gas // J. Membr. Sci. 2016. V. 499. P. 143.
- Abir H., Sheintuch M. Modeling H2 transport through a Pd or Pd/Ag membrane, and its inhibition by co-adsorbates, from first principles // J. Membr. Sci. 2014. V. 466. P. 58.
- Babak V.N., Didenko L.P., Zakiev S.E. Hydrogen transport through a membrane module based on a palladium foil // Theor. Found. Chem. Eng. 2013. V. 47. P. 719. (Бабак В.Н., Диденко Л.П., Закиев С.Е. Перенос водорода через мембранный модуль с помощью палладиевой фольги // Теорет. основы хим. технол. 2013. Т. 47. С. 730.)
- Sievert A., Danz W. Solubility of D2 and H2 in palladium // Z. Physik. Chem. 1936. V. 34B. P. 154.
- Schwaab M., Alberton A.L., Fontes C.E., Bittencourt R.C., Pinto J.C. Hybrid modeling of methane reformers. 2. Modeling of the industrial reactors // Ind. Eng. Chem. Res. 2009. V. 48. № 21. P. 9376.
- Shirasaki Y., Tsuneki T., Ota Y., Yasuda I., Tachibana S., Nakajima H., Kobayashi K. Development of membrane reformer system for highly efficient hydrogen production from natural gas // Int. J. Hydrogen Energy. 2009. V. 34. № 10. P. 4482.
- Pantoleontos G., Kikkinides E.S., Georgiadis M.C. A heterogeneous dynamic model for the simulation and optimization of the steam methane reforming reactor // Int. J. Hydrogen Energy. 2012. V 37. № 21. P. 16346.
- Wilde I., Fromet G.F. Computation fluid dynamics in chemical reactor analysis and design: Application to the zone flow reactor for methane steam reforming // Fuel. 2012. V. 100. P. 48.
- Said S.A., Simakov D.S.A., Mokheimer E.M.A., Habib M.A., Ahmed S., Waseeuddin M., Román-Leshkov Y. Computational fluid dynamics study of hydrogen generation by low temperature methane reforming in a membrane reactor // Int. J. Hydrogen Energy. 2015. V. 40. P. 3158.
- Lee H., Kim A., Lee B., Lim H. Comparative numerical analysis for an efficient hydrogen production via a steam methane reforming with a packed-bed reactor, a membrane reactor, and a sorption-enhanced membrane reactor // Energy Convers. Manag. 2020. V. 213. P. 112839.
- De Medeiros J.P.F., Dias V.F., da Silva J.M., da Silva J.D. Thermochemical performance analysis of the steam reforming of methane in a fixed bed membrane reformer: A modelling and simulation study // Membranes. 2021. V. 11. P. 6.
- Vakhshouri K., Hashemi M.M.Y.M. Simulation study of radial heat and mass transfer inside a fixed bed catalytic reactor // Int. J. Chem. Biol. Eng. 2008. V. 23. № 1. P. 1.
- Ben-Mansour R., Abuelyamen A., Habib M.A. CFD modeling of hydrogen separation through Pd-based membrane // Int. J. Hydrogen Energy. 2020. V. 45. P. 23006.
- Horiuti J., Miyahara K. Mechanism of catalyzed hydrogenation of ethylene in the presence of metallic catalysts // Z. Phys. Chem. Neue Folge. 1969. Bd. 64. S. 36.
- Rekoske J.E., Cortright R.D., Goddard S.A., Sharma S.B., Dumesic J.A. Microkinetic analysis of diverse experimental data for ethylene hydrogenation on platinum // J. Phys. Chem. 1992. V. 96. P. 1880.
- Gobina E., Hughes R. Ethane dehydrogenation using a high-temperature catalytic membrane reactor // J. Membr. Sci. 1994. V. 90. P. 11.
- Olsbye U., Virnovskaia A., Prytz Ø., Tinnemans S.J., Weckhuysen B.M. Mechanistic insight in the ethane dehydrogenation reaction over Cr/Al2O3 catalyst // Catal. Lett. 2005. V. 103. P. 143.
- Lobera M.P., Téllez C., Herguido J., Menéndez M. Transient kinetic modelling of propane dehydrogenation over a Pt-Sn-K/Al2O3 catalyst // Applied Catalysis A General. 2008. V. 349. P. 156.
- Virnovskaia A., Rytter E., Olsbye U. Kinetic and isotopic study of ethane dehydrogenation over a semicommercial Pt,Sn/Mg(Al)O catalyst // Ind. Eng. Chem. Res. 2008. V. 47. P. 7167.
- Szeyner J., Yeung K.L., Varma A. Effect of catalyst distribution in a membrane reactor: Experiments and model // AIChEJ. 1997. V. 43(8). P. 2059.
- Shelepova E.V., Vedyagin A.A. Theoretical prediction of the efficiency of hydrogen production via alkane dehydrogenation in catalytic membrane reactor // Hydrogen. 2021. V. 2. P. 362.
- Бабак В.Н., Диденко Л.П., Квурт Ю.П., Семенцова Л.А., Закиев С.Е. Моделирование паровой конверсии метана в мембранном реакторе с никелевым катализатором и фольгой из палладиевого сплава // Теорет. основы хим. технол. 2021. Т. 55. № 3. С. 319. (Babak V.N., Didenko L.P., Kvurt Y.P., Sementsova L.A., Zakiev S.E. Simulation of steam reforming in a membrane reaactor with a nickel catalyst and a palladium alloy foil // Theor. Found. Chem. Eng. 2021. V. 55. № 3. P. 390.)
- Ахмадулина Л.Ф., Еникеева Л.В., Новичкова А.В., Губайдуллин И.Н., Потемкин Д.И., Снытников П.В. Математическое моделирование процесса низкотемпературной паровой конверсии пропана в присутствии метана на никелевом катализаторе // Журн. СВМО. 2016. Т. 18. С. 117.
- Orekhova N.V., Ermilova M.M., Smirnov V.S., Gryaznov V.M. Effect of reaction products on dehydrogenation rate of isoamylenes on a membrane catalyst // Bulletin of the Academy of Sciences of the USSR. Division of Chemical Science. 1976. V. 25. № 11. P. 2421.
- Диденко Л.П., Семенцова Л.А., Чижов П.Е., Бабак В.Н., Савченко В.И. Разделительные свойства фольги из сплавов Pd–(6%)In–(0.5%)Ru, Pd–(6%)Ru, Pd–(10%)Ru и влияние СО2, СО, СН4 и водяного пара на скорость потока Н2 через исследуемые мембраны // Изв. АН. Сер. Хим. 2016. № 8. С. 1997.
- Диденко Л.П., Бабак В.Н., Семенцова Л.А., Дорофеева Т.В., Чижов П.Е., Горбунов С.В. Паровая конверсия этана и его смесей с метаном в мембранном реакторе с фольгой из Pd–Ru сплава // Мембраны и мембранные технол. 2023. Т. 13. № 2. С. 83. (Didenko L.P., Babak V.N., Sementsova L.A., Dorofeeva T.V., Chizhov P.E., Gorbunov S.V. Steam conversion of ethane and methane-ethane mixtures in a membrane reactor with a foil made of a Pd–Ru alloy // Membranes and Membrane Technol. 2023. V. 5. № 2. P. 69.)
- Диденко Л.П., Бабак В.Н., Семенцова Л.А., Чижов П.Е., Дорофеева Т.В. Паровая конверсия пропана в мембранном реакторе с промышленным никелевым катализатором и фольгой из Pd–Ru сплава // Нефтехимия. 2021. Т. 61. Вып. 1. С. 103. (Didenko L.P., Babak V.N., Sementsova L.A., Chizhov P.E., Dorofeeva T.V. Steam conversion of propane in a membrane reactor with a commercial nickel catalyst // Petroleum Chemistry. 2021. V. 61. № 1. P. 92.)
- Диденко Л.П., Бабак В.Н., Семенцова Л.А., Дорофеева Т.В., Чижов П.Е., Горбунов С.В. Получение водорода высокой чистоты паровой конверсией попутного нефтяного газа в мембранном реакторе с промышленным никелевым катализатором // Мембраны и мембранные технол. 2021. Т. 11. № 5. С. 336. (Didenko L.P., Babak V.N., Sementsova L.A., Dorofeeva T.V., Chizhov P.E., Gorbunov S.V. Production of high-purity hydrogen by steam reforming of associated petroleum gas in membrane reactor with industrial nickel catalyst // Membranes and Membrane Technol. 2021. V. 11. № 5. P. 302.)
- Гороновский И.Т., Назаренко Ю.П., Некряч Е.Ф. Краткий справочник химика. Киев: Наукова думка. 1974.
Қосымша файлдар
