Влияние скорости подачи дизельной фракции на удаление кремния катализатором защитного слоя
- Авторы: Петров Р.В.1, Решетников С.И.1, Дик П.П.1, Голубев И.С.1, Носков А.С.1
-
Учреждения:
- Институт катализа им. Г.К. Борескова (ИК СО РАН)
- Выпуск: Том 59, № 1 (2025)
- Страницы: 77–85
- Раздел: Статьи
- Статья опубликована: 02.07.2025
- URL: https://rjmseer.com/0040-3571/article/view/686516
- DOI: https://doi.org/10.31857/S0040357125010094
- EDN: https://elibrary.ru/txhlgw
- ID: 686516
Цитировать
Аннотация
Исследовано влияние скорости подачи дизельного топлива на адсорбцию кремния на NiMo/Al2O3-катализаторе защитного слоя в процессе гидроочистки. В качестве сырья использовалась прямогонная дизельная фракция, содержащая добавку декаметилциклопентасилоксана в количестве 200 млн–1 как дополнительный источник кремния. Было проведено три серии экспериментов длительностью по 60 часов при удельных скоростях подачи, равных 0.75, 1.5 и 3.0 ч–1. Установлено, что с увеличением удельной скорости подачи содержание кремния в катализаторе защитного слоя увеличивается. Для оценки эффективности процесса адсорбции использовался коэффициент извлечения кремния, который равен отношению количества адсорбированного (извлеченного из сырья) кремния к поданному за время эксперимента. В диапазоне скоростей 0.75–3.0 ч–1 коэффициент извлечения кремния снижался с 0.93 до 0.61 за счет более интенсивного заполнения активных центров на поверхности катализатора. Проведена оценка влияния внешнего массообмена на процесс адсорбции кремния.
Полный текст

Об авторах
Р. В. Петров
Институт катализа им. Г.К. Борескова (ИК СО РАН)
Автор, ответственный за переписку.
Email: petrov@catalysis.ru
Россия, Новосибирск
С. И. Решетников
Институт катализа им. Г.К. Борескова (ИК СО РАН)
Email: petrov@catalysis.ru
Россия, Новосибирск
П. П. Дик
Институт катализа им. Г.К. Борескова (ИК СО РАН)
Email: petrov@catalysis.ru
Россия, Новосибирск
И. С. Голубев
Институт катализа им. Г.К. Борескова (ИК СО РАН)
Email: petrov@catalysis.ru
Россия, Новосибирск
А. С. Носков
Институт катализа им. Г.К. Борескова (ИК СО РАН)
Email: petrov@catalysis.ru
Россия, Новосибирск
Список литературы
- Zeuthen P., Schmidt M.T., Rasmussen H.W., Moyse B.M. The benefits of cat feed hydrotreating and the impact of feed nitrogen on catalyst stability // NPRA Annu. Meet. Tech. Pap. 2010. V. 2. № August. P. 818.
- Kressmann S., Morel F., Harlé V., Kasztelan S. Recent developments in fixed-bed catalytic residue upgrading // Catal. Today. 1998. V. 43. № 3–4. P. 203.
- Chainet F., Le Meur L., Lienemann C.P., Ponthus J., Courtiade M., Donard O.F.X. Characterization of silicon species issued from PDMS degradation under thermal cracking of hydrocarbons: Part 1 – Gas samples analysis by gas chromatography-time of flight mass spectrometry // Fuel. 2013. V. 111. P. 519.
- Rome C., Hueston T. Silicone in the oil and gas industry // Compos. Int. 2002. № 53. P. 1.
- Chainet F., Lienemann C.P., Courtiade M., Ponthus J., Donard O.F.X. Silicon speciation by hyphenated techniques for environmental, biological and industrial issues: A review // J. Anal. At. Spectrom. 2011. V. 26. № 1. P. 30.
- Pohl P., Vorapalawut N., Bouyssiere B., Lobinski R. Trace-level determination and insight in speciation of silicon in petrochemical samples by flow-injection high resolution ICP MS and HPLC-high resolution ICP MS // J. Anal. At. Spectrom. 2010. V. 25. № 9. P. 1461.
- Sanchez R., Todoli J.L., Lienemann C.P., Mermet J.M. Universal calibration for metal determination in fuels and biofuels by inductively coupled plasma atomic emission spectrometry based on segmented flow injection and a 350°C heated chamber // J. Anal. At. Spectrom. 2012. V. 27. № 6. P. 937.
- Perez-Romo P., Navarrete-Bolanos J., Aguilar-Barrera C., Angeles-Chavez C., Laredo G.C. Morphological and structural study of the Si deposition on the sulfided NiMo/γ-Al2O3 catalyst: effect on the support // Appl. Catal. A Gen. 2014. V. 485. P. 84.
- Nam S., Namkoong W., Kang J.H., Park J.K., Lee N. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test // Waste Manag. 2013. V. 33. № 10. P. 2091.
- Cabrera-Codony A., Montes-Morán M.A., Sánchez-Polo M., Martín M.J., Gonzalez-Olmos R. Biogas upgrading: optimal activated carbon properties for siloxane removal // Environ. Sci. Technol. 2014. V. 48. № 12. P. 7187.
- Kellberg L., Zeuthen P., Jakobsen H.J. Deactivation of HDT catalysts by formation of silica gels from silicone oil. Characterization of spent catalysts from HDT of Coker naphtha using 29Si and 13C CP/MAS NMR // J. Catal. 1993. V. 143. № 1. P. 45.
- Vaiss V.S., Fonseca C.G., Antunes F.P.N., Chinelatto L.S., Chiaro S.S.X., Souza W.F., Leitão A.A. Experimental and theoretical study of deactivated HDT catalysts by Si species deposited on their surfaces: models proposition, structural and thermodynamic analysis // J. Catal. 2020. V. 389. P. 578.
- Kam E.K.T., Al-Shamali M., Juraidan M., Qabazard H. A hydroprocessing multicatalyst deactivation and reactor performance model-pilot-plant life test applications // Energy and Fuels. 2005. V. 19. № 3. P. 753.
- Rodríguez E., Félix G., Ancheyta J., Trejo F. Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons // Fuel. 2018. V. 225. P. 118.
- Nadeina K.A., Kazakov M.O., Kovalskaya A.A., Danilova I.G., Cherepanova S.V., Danilevich V. V., Gerasimov E.Y., Prosvirin I.P., Kondrashev D.O., Kleimenov A.V., Klimov O.V., Noskov A.S. Influence of alumina precursor on silicon capacity of NiMo/γ-Al2O3 guard bed catalysts for gas oil hydrotreating // Catal. Today. 2020. V. 353. P. 53.
- Nadeina K.A., Kazakov M.O., Kovalskaya A.A., Danilevich V.V., Klimov O.V., Danilova I.G., Khabibulin D.F., Gerasimov E.Y., Prosvirin I.P., Ushakov V.A., Fedotov K.V., Kondrashev D.O., Kleimenov A.V., Noskov A.S. Guard bed catalysts for silicon removal during hydrotreating of middle distillates // Catal. Today. 2019. V. 329. P. 53.
- Болдушевский Р.Э., Гусева А.И., Виноградова Н.Я., Наранов Е.Р., Максимов А.Л., Никульшин П.А. Оценка гидрообессеривающей активности при разработке катализаторов деметаллизации тяжелого нефтяного сырья // Журн. прикл. химии. 2018. Т. 91. № 12. С. 1784. [Boldushevskii R.E., Guseva A.I., Vinogradova N.Y., Naranov E.R., Maksimov A.L., Nikul’shin P.A. Evaluation of the hydrodesulfurization activity in development of catalysts for demetallization of heavy petroleum feedstock // Russ. J. Appl. Chem. 2018. V. 91. № 12. 2046.]
- Rana M.S., Al Humaidan F.S., Bouresli R., Navvamani R. Guard-bed catalyst: impact of textural properties on catalyst stability and deactivation rate // Mol. Catal. 2021. V. 502. 111375.
- Pérez-Romo P., Aguilar-Barrera C., Navarrete-Bolaños J., Rodríguez-Otal L.M., Beltrán F.H., Fripiat J. Silica poisoning in HDT catalysts by light coker naphtha // Appl. Catal. A Gen. 2012. V. 449. P. 183.
- Мешалкин В.П., Орехов В.А., Быков А.А., Бобков В.И., Шинкевич А.И. Теория гетерогенной реакции твердое-жидкость с появлением газовой фазы // Теорет. основы хим. технологии. 2023. Т. 57. № 5. С. 545. [Meshalkin V.P., Orekhov V.A., Bykov A.A., Bobkov V.I., Shinkevich A.I. Theory of a solid-liquid heterogeneous reaction to form a gas phase // Theor. Found. Chem. Eng. 2023. V. 57. № 5. P. 828.]
- Голубев И.С., Дик П.П., Петров Р.В., Мик И.А., Бессонова Н.В., Решетников С.И., Носков А.С. Динамика сорбции кремния на NiMo/Al2O3-катализаторе защитного слоя в процессе гидроочистки дизельного топлива // Нефтехимия. 2023. Т. 63. № 6. С. 848. [Golubev I.S., Dik P.P., Petrov R.V., Mik I.A., Bessonova N.V., Reshetnikov S.I., Noskov A.S. Dynamics of Silicon Sorption on the NiMo/Al2O3 Guard Bed Catalyst During Hydrotreating of Diesel // Petroleum Chemistry. 2023. V. 63. № 10. P. 1203.]
- Александров П.В., Бухтиярова Г.А., Решетников С.И. Исследование влияния добавок газойля коксования к прямогонной дизельной фракции на процесс гидроочистки в присутствии CoMo/Al2O3 катализатора // Журн. прикл. химии. 2019. Т. 92. № 8. С. 993. [Aleksandrov P.V., Bukhtiyarova G.A., Reshetnikov S.I. Study of the influence exerted by addition of coker gas oil to straight-run gas oil on the process of hydrotreating in the presence of CoMo/Al2O3 catalyst // Russ. J. Appl. Chem. 2019. V. 92. № 8. 1077.]
- Macias M.J., Ancheyta J. Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes // Catal. Today. 2004. V. 98. № 1–2. P. 243.
- Korsten H., Hoffmann U. Three-Phase Reactor Model Pilot Trickle-Bed for Hydrotreating in Reactors // AIChE Journal. 1996. V. 42. № 5. P. 1350.
- Tyn M.T., Calus W.F. Estimating Liquid Molal Volume // Processing. 1975. V. 21. № 5. P. 16.
- Glaso O. Generalized Pressure-Volume-Temperature Correlations // J. Pet. Technol. 1980. V. 32. № 5. P. 785.
- Riazi M.-R. Characterization and properties of petroleum fractions. Philadelphia: Astm Intl, 2005.
- Ancheyta J., Munoz J.A.D., Macias M.J. Experimental and theoretical determination of the particle size of hydrotreating catalysts of different shapes // Catal. Today. 2005. V. 109. № 1–4. P. 120.
- Tyn M.T., Calus W.F. Diffusion Coefficients in Dilute Binary Liquid Mixtures // J. Chem. Eng. Data. 1975. V. 20. № 1. P. 106.
- Tirado A., Ancheyta J. Modeling of a bench-scale fixed-bed reactor for catalytic hydrotreating of vegetable oil // Renew. Energy. 2020. V. 148. P. 790.
- Bej S.K., Dalai A.K., Maity S.K. Effect of diluent size on the performance of a microscale fixed bed multiphase reactor in up flow and down flow modes of operation // Catal. Today. 2001. V. 64. № 3–4. P. 333.
Дополнительные файлы
