Abstract
The issue of optimizing the construction of shallow foundations is considered, due to the change of the base to a stepped one. Optimization involves reducing the cost of construction of a zero-cycle without losing the strength, reliability and durability of the object. The study was conducted in several stages, including numerical modeling, laboratory tests and field tests with foundation model. The simulation results showed that foundations with a flat base have a large shrinkage compared to foundations with a stepped base, varying from 6% to 28% depending on geological conditions and modeling techniques. Laboratory tests and a field experiment confirmed these results, showing that foundations with a stepped base have a lower draft relative to foundations with a flat base by at least 30%. In addition, stepped foundations turned out to be more resistant to random eccentricities and eccentric loading. The study makes it possible to assert that the use of foundations with the proposed geometry can lead to significant savings by reducing material and resource consumption, as well as provide additional load-bearing capacity. These conclusions can be useful in choosing the optimal type of foundation for objects with shallow foundations.