Artificial modified nucleotides for the electrochemical detection of nucleic acid amplification products
- Authors: Suprun Е.V.1,2, Khmeleva S.A.2, Ptitsyn K.G.2, Kurbatov L.K.2, Radko S.P.2
-
Affiliations:
- Moscow State University
- Orekhovich Research Institute of Biomedical Chemistry
- Issue: Vol 79, No 7 (2024)
- Pages: 679-701
- Section: Articles
- Submitted: 31.01.2025
- URL: https://rjmseer.com/0044-4502/article/view/650191
- DOI: https://doi.org/10.31857/S0044450224070014
- EDN: https://elibrary.ru/TOWFEY
- ID: 650191
Cite item
Full Text

About the authors
Е. V. Suprun
Moscow State University; Orekhovich Research Institute of Biomedical Chemistry
Author for correspondence.
Email: lenasuprun@mail.ru
химический факультет
Russian Federation, 119991, Moscow; 119121, MoscowS. A. Khmeleva
Orekhovich Research Institute of Biomedical Chemistry
Email: lenasuprun@mail.ru
Russian Federation, 119121, Moscow
K. G. Ptitsyn
Orekhovich Research Institute of Biomedical Chemistry
Email: lenasuprun@mail.ru
Russian Federation, 119121, Moscow
L. K. Kurbatov
Orekhovich Research Institute of Biomedical Chemistry
Email: lenasuprun@mail.ru
Russian Federation, 119121, Moscow
S. P. Radko
Orekhovich Research Institute of Biomedical Chemistry
Email: lenasuprun@mail.ru
Russian Federation, 119121, Moscow
References
- Mahanama A., Wilson-Davies E. Insight into PCR testing for surgeons // Surgery (Oxford). 2021. V. 39. № 11. P. 759. https://doi.org/10.1016/j.mpsur.2021.09.016
- Zhao Y., Chen F., Li Q., Wang L., Fan C. Isothermal amplification of nucleic acids // Chem. Rev. 2015. V. 115. № 22. P. 12491. https://doi.org/10.1021/acs.chemrev.5b00428
- De Felice M., De Falco M., Zappi D., Antonacci A., Scognamiglio V. Isothermal amplification-assisted diagnostics for COVID-19 // Biosens. Bioelectron. 2022. V. 205. Article 114101. https://doi.org/10.1016/j.bios.2022.114101
- Wang C., Liu M., Wang Z., Li S., Deng Y., He N. Point-of-care diagnostics for infectious diseases: From methods to devices // Nano Today 2021. V. 37. Article 101092. https://doi.org/10.1016/j.nantod.2021.101092
- Mukama O., Nie C., de Dieu Habimana J., Meng X., Ting Y., Songwe F. et al. Synergetic performance of isothermal amplification techniques and lateral flow approach for nucleic acid diagnostics // Anal. Biochem. 2020. V. 600. Article 113762. https://doi.org/10.1016/j.ab.2020.113762
- Qi H., Yue S., Bi S., Ding C., Song W. Isothermal exponential amplification techniques: From basic principles to applications in electrochemical biosensors // Biosens. Bioelectron. 2018. V. 110. P. 207. https://doi.org/10.1016/j.bios.2018.03.065
- Trotter M., Borst N., Thewes R., von Stetten F. Electrochemical DNA sensing – Principles, commercial systems, and applications // Biosens. Bioelectron. 2020. V. 154. Article 112069. https://doi.org/10.1016/j.bios.2020.112069
- Hocek M., Fojta M. Nucleobase modification as redox DNA labelling for electrochemical detection // Chem. Soc. Rev. 2011. V. 40. P. 5802. https://doi.org/10.1039/C1CS15049A
- Fojta M. Redox Labeling of nucleic acids for electrochemical analysis of nucleotide sequences and DNA damage / Biosensors for Security and Bioterrorism Applications / Eds. D.P. Nikolelis, G.-P. Nikoleli. New York: Springer, 2016. P. 309.
- Супрун Е.В., Будников Г.К. Биоэлектрохимия как область анализа: исторические аспекты и современное состояние // Журн. аналит. химии. 2022. Т. 77. № 6. С. 490. https://doi.org/10.31857/S0044450222060184 (Suprun E.V., Budnikov H.C. Bioelectrochemistry as a Field of Analysis: Historical Aspects and Current Status // J. Anal. Chem. 2022. V. 77. № 6. P. 643. https://doi.org/10.1134/S1061934822060168)
- de‐los‐Santos‐Álvarez P., Lobo‐Castañón M.J., Miranda‐Ordieres A.J., Tunon‐Blanco P. Electrochemistry of nucleic acids at solid electrodes and its applications // Electroanalysis. 2004. V. 16. P. 1193. https://doi.org/10.1002/elan.200402995
- Diculescu V.C., Chiorcea-Paquim A.M., Oliveira-Brett A.M. Applications of a DNA-electrochemical biosensor // Trends Anal. Chem. 2016. V. 79. P. 23. https://doi.org/10.1016/j.trac.2016.01.019
- Fojta M., Daňhel A., Havran L., Vyskočil V. Recent progress in electrochemical sensors and assays for DNA damage and repair // Trends Anal. Chem. 2016. V. 79. P. 160. https://doi.org/10.1016/j.trac.2015.11.018
- Ferapontova E.E. DNA electrochemistry and electrochemical sensors for nucleic acids // Annu. Rev. Anal. Chem. 2018. V. 11. P. 197. https://doi.org/10.1146/annurev-anchem-061417-125811
- Oliveira S.C.B., Oliveira-Brett A.M. Boron doped diamond electrode pre-treatments effect on the electrochemical oxidation of dsDNA, DNA bases, nucleotides, homopolynucleotides and biomarker 8-oxoguanine // J. Electroanal. Chem. 2010. V. 648. P. 60. https://doi.org/10.1016/j.jelechem.2010.06.020
- Baluchová S., Daňhel A., Dejmková H., Ostatná V., Fojta M., Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review // Anal. Chim. Acta. 2019. V. 1077. P. 30. https://doi.org/10.1016/j.aca.2019.05.041
- Hason S., Danhel A., Schwarzova-Peckova K., Fojta M. Carbon electrodes in electrochemical analysis of biomolecules and bioactive substances: Roles of surface structures and chemical groups / Nanotechnology and Biosensors / Eds. D.P. Nikolelis, G.-P. Nikoleli. Amsterdam, Oxford, Cambridge: Elsevier, 2018. P. 51.
- Oliveira Brett A.M., Matysik F.M. Voltammetric and sonovoltammetric studies on the oxidation of thymine and cytosine at a glassy carbon electrode // J. Electroanal. Chem. 1997. V. 429. P. 95. https://doi.org/10.1016/S0022-0728(96)05018-8
- Oliveira-Brett A.M., Piedade J.A.P., Silva L.D., Diculescu V.C. Voltammetric determination of all DNA nucleotides // Anal. Biochem. 2004. V. 332. P. 321. https://doi.org/10.1016/j.ab.2004.06.021
- Ferapontova E.E. Electrochemistry of guanine and 8-oxoguanine at gold electrodes // Electrochim. Acta. 2004. V. 49. P. 1751. https://doi.org/10.1016/j.electacta.2003.12.006
- Oliveira-Brett A.M. Electrochemical DNA assays / Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications / Ed. P.N. Barlett. John Wiley & Sons, 2008. P. 411.
- Špaček J., Daňhel A., Hasoň S., Fojta M. Label-free detection of canonical DNA bases, uracil and 5-methylcytosine in DNA oligonucleotides using linear sweep voltammetry at a pyrolytic graphite electrode // Electrochem. Commun. 2017. V. 82. P. 34. https://doi.org/10.1016/j.elecom.2017.07.013
- Stempkowska I., Ligaj M., Jasnowska J., Langer J., Filipiak M. Electrochemical response of oligonucleotides on carbon paste electrode // Bioelectrochemistry. 2007. V. 70. P. 488. https://doi.org/10.1016/j.bioelechem.2006.07.012
- Dryhurst G., Elving P.J. Electrochemical oxidation of adenine: Reaction products and mechanisms // J. Electrochem. Soc. 1968. V. 115. P. 1014. https://doi.org/10.1149/1.2410847
- Dryhurst G., Pace G.F. Electrochemical oxidation of guanine at the pyrolytic graphite electrode // J. Electrochem. Soc. 1970. V. 117. P. 1259. https://doi.org/10.1149/1.2407283
- Goncalves L.M., Batchelor-McAuley C., Barros A.A., Compton R.G. Electrochemical oxidation of adenine: a mixed adsorption and diffusion response on an edge-plane pyrolytic graphite electrode // J. Phys. Chem. C 2010. V. 114. № 33. P. 14213. https://doi.org/10.1021/jp1046672
- Li Q., Batchelor-McAuley C., Compton R.G. Electrochemical oxidation of guanine: Electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses // J. Phys. Chem. B 2010. V. 114. № 21. P. 7423. https://doi.org/10.1021/jp1021196
- Dryhurst G. Electrochemical determination of adenine and adenosine: Adsorption of adenine and adenosine at the pyrolytic graphite electrode // Talanta. 1972. V. 19. P. 769. https://doi.org/10.1016/0039-9140(72)80004-3
- Dryhurst G. Adsorption of guanine and guanosine at the pyrolytic graphite electrode: Implications for the determination of guanine in the presence of guanosine // Anal. Chim. Acta. 1971. V. 57. P. 137. https://doi.org/10.1016/S0003-2670(01)80138-0
- Hasoň S., Fojta M., Ostatna V. Label-free electrochemical analysis of purine nucleotides and nucleobases at disposable carbon electrodes in microliter volumes // J. Electroanal. Chem. 2019. V. 847. Article 113252. https://doi.org/10.1016/j.jelechem.2019.113252
- de-los-Santos-Álvarez N., de-los-Santos-Álvarez P., Jesús Lobo-Castañón M., López R., Miranda-Ordieres A.J., Tuñón-Blanco P. Electrochemical oxidation of guanosine and adenosine: Two convergent pathways // Electrochem. Commun. 2007. V. 9. № 8. P. 1862. https://doi.org/10.1016/j.elecom.2007.04.018
- Goyal R.N., Sangal A. Electrochemical oxidation of adenosine monophosphate at a pyrolytic graphite electrode // J. Electroanal. Chem. 2003. V. 557. P. 147. https://doi.org/10.1016/S0022-0728(03)00367-X
- Goyal R.N., Singh U.P., Abdullah A.A. Electrochemical oxidation of uracil and 5-halouracils at pyrolytic graphite electrode // Indian J. Chem. 2003. V. 42A. P. 42. http://nopr.niscair.res.in/handle/123456789/20491
- Brotons A., Vidal-Iglesias F.J., Solla-Gullón J., Iniesta J. Carbon materials for the electrooxidation of nucleobases, nucleosides and nucleotides toward cytosine methylation detection: A review // Anal. Methods. 2016. V. 8. P. 702. https://doi.org/10.1039/C5AY02616D
- Brotons A., Mas L.A., Metters J.P., Banks C.E., Iniesta J. Voltammetric behaviour of free DNA bases, methylcytosine and oligonucleotides at disposable screen printed graphite electrode platforms // Analyst. 2013. V. 138. P. 5239. https://doi.org/10.1039/c3an02050a
- Vidláková P., Pivoňková H., Kejnovská I., Trnková L., Vorlíčková M., Fojta M., Havran L. G-quadruplex-based structural transitions in 15-mer DNA oligonucleotides varying in lengths of internal oligo(dG) stretches detected by voltammetric techniques // Anal. Bioanal. Chem. 2015. V. 407. P. 5817. https://doi.org/10.1007/s00216-015-8768-1
- Brotons A., Sanjuán I., Foster C.W., Banks C.E., Vidal‐Iglesias F.J., Solla‐Gullón J., Iniesta J. A facile and cost‐effective electroanalytical strategy for the quantification of deoxyguanosine and deoxyadenosine in oligonucleotides using screen‐printed graphite electrodes // Electroanalysis. 2016. V. 28. P. 3066. https://doi.org/10.1002/elan.201600272
- Suprun E.V., Kutdusova G.R., Khmeleva S.A., Ptitsyn K.G., Kurbatov L.K., Radko S.P. Voltammetric oxidation behavior of single-stranded DNA on carbon screen printed electrodes: From short oligonucleotides to ultralong amplification products // Microchem. J. 2023. V. 191. Article 108800. https://doi.org/10.1016/j.microc.2023.108800
- Chiorcea-Paquim A.M., Oliveira-Brett A.M. Redox behaviour of G-quadruplexes // Electrochim. Acta. 2014. V. 126. P. 162. https://doi.org/10.1016/j.electacta.2013.07.150
- Rodrigues Pontinha A.D., Chiorcea-Paquim A.M., Eritja R., Oliveira-Brett A.M. Quadruplex nanostructures of d(TGGGGT): Influence of sodium and potassium ions // Anal. Chem. 2014. V. 86. P. 5851. https://doi.org/10.1021/ac500624z
- Spiegel J., Adhikari S., Balasubramanian S. The structure and function of DNA G-quadruplexes // Trends Chem. 2020. V. 2. № 2. P. 123. https://doi.org/10.1016/j.trechm.2019.07.002
- Ali M.M., Li F., Zhang Z., Zhang K., Kang D.K., Ankrum J.A. et al. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine // Chem. Soc. Rev. 2014. V. 43. № 10. P. 3324. https://doi.org/10.1039/C3CS60439J
- Tang J., Liang A., Yao C., Yang D. Assembly of rolling circle amplification‐produced ultralong single‐stranded DNA to construct biofunctional DNA materials // Chem. Eur. J. 2023. V. 29. Article e202202673. https://doi.org/10.1002/chem.202202673
- Brabec V. Study of thermal and acid denaturation of DNA by means of voltammetry at graphite electrodes // Biopolymers. 1979. V. 18. P. 2397. https://doi.org/10.1002/bip.1979.360181003
- Brabec V. 314 – Electrochemical oxidation of nucleic acids and proteins at graphite electrode. Qualitative aspects // Bioelectrochem. Bioenerg. 1980. V. 7. P. 69. https://doi.org/10.1016/0302-4598(80)87033-4
- Brabec V., Koudelka J. 394 – Oxidation of deoxyribonucleic acid at carbon electrodes. The effect of the quality of the deoxyribonucleic acid sample // J. Electroanal. Chem. Interfacial Electrochem. 1980. V. 116. P. 793. https://doi.org/10.1016/S0022-0728(80)80307-X
- Brabec V. Nucleic acid analysis by voltammetry at carbon electrodes // J. Electroanal. Chem. Interfacial Electrochem. 1981. V. 128. P. 437. https://doi.org/10.1016/S0022-0728(81)80236-7
- Ferapontova E.E., Domínguez E. Direct electrochemical oxidation of DNA on polycrystalline gold electrodes // Electroanalysis. 2003. V. 15. P. 629. https://doi.org/10.1002/elan.200390079
- Oliveira Brett A.M., Serrano S.H.P. The electrochemical oxidation of DNA // J. Braz. Chem. Soc. 1995. V. 6. P. 97.
- Honeychurch K.C., O’Donovan M.R., Hart J.P. Voltammetric behaviour of DNA bases at a screen-printed carbon electrode and its application to a simple and rapid voltammetric method for the determination of oxidative damage in double stranded DNA // Biosens. Bioelectron. 2007. V. 22. P. 2057. https://doi.org/10.1016/j.bios.2006.09.019
- Brabec V. Interaction of nucleic acids with electrically charged surfaces: VI. A comparative study on the electrochemical behaviour of native and denatured DNAs at graphite electrodes // Biophys. Chem. 1979. V. 9. P. 289. https://doi.org/10.1016/0301-4622(75)80045-7
- Brett C.M.A., Oliveira Brett A.M., Serrano S.H. On the adsorption and electrochemical oxidation of DNA at glassy carbon electrodes // J. Electroanal. Chem. 1994. V. 366. P. 225. https://doi.org/10.1016/0022-0728(93)02994-S
- Suprun E.V., Kutdusova G.R., Khmeleva S.A., Radko S.P. Towards deeper understanding of DNA electrochemical oxidation on carbon electrodes // Electrochem. Commun. 2021. V. 124. Article 106947. https://doi.org/10.1016/j.elecom.2021.106947
- Suprun E.V. Direct electrochemistry of proteins and nucleic acids: The focus on 3D structure // Electrochem. Commun. 2021. V. 125. Article 106983. https://doi.org/10.1016/j.elecom.2021.106983
- Hocek M., Fojta M. Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids // Org. Biomol. Chem. 2008. V. 6. № 13. P. 2233. https://doi.org/10.1039/B803664K
- Wagner C., Wagenknecht H.A. Reductive electron transfer in phenothiazine‐modified DNA is dependent on the base sequence // Chem. Eur. J. 2005. V. 11. № 6. P. 1871. https://doi.org/10.1002/chem.200401013
- Fendt L.A., Bouamaied I., Thöni S., Amiot N., Stulz E. DNA as supramolecular scaffold for porphyrin arrays on the nanometer scale // J. Am. Chem. Soc. 2007. V. 129. № 49. P. 15319. https://doi.org/10.1021/ja075711c
- Hurley D.J., Tor Y. Metal-containing oligonucleotides: Solid-phase synthesis and luminescence properties // J. Am. Chem. Soc. 1998. V. 120. № 9. P. 2194. https://doi.org/10.1021/ja9739998
- Hurley D.J., Tor Y. Donor/acceptor interactions in systematically modified RuII–OsII oligonucleotides // J. Am. Chem. Soc. 2002. V. 124. № 44. P. 13231. https://doi.org/10.1021/ja020172r
- Hurley, D.J., Tor Y. Ru (II) and Os (II) nucleosides and oligonucleotides: Synthesis and properties // J. Am. Chem. Soc. 2002. V. 124. № 14. P. 3749. https://doi.org/10.1021/ja0123103
- Hurley D.J., Seaman S.E., Mazura J.C., Tor Y. Fluorescent 1,10-phenanthroline-containing oligonucleotides distinguish between perfect and mismatched base pairing // Org. Lett. 2002. V. 4. № 14. P. 2305. https://doi.org/10.1021/ol026043x
- Walton T.A., Lyttle, M.H., Dick, D.J., Cook R.M. Evaluation of new linkers and synthetic methods for internal modified oligonucleotides // Bioconjug. Chem. 2002. V. 13. № 5. P. 1155. https://doi.org/10.1021/bc0200125
- Kuznetsova V.E., Spitsyn M.A., Shershov V.E., Guseinov T.O., Fesenko E.E., Lapa S.A. et al. Novel fluorescently labeled nucleotides: Synthesis, spectral properties and application in polymerase chain reaction // Mendeleev Commun. 2016. V. 2. № 26. P. 95. https://doi.org/10.1016/j.mencom.2016.03.002
- Shershov V.E., Lapa S.A., Kuznetsova V.E., Spitsyn M.A., Guseinov T.O., Polyakov S.A. et al. Comparative study of novel fluorescent cyanine nucleotides: Hybridization analysis of labeled PCR products using a biochip // J. Fluoresc. 2017. V. 27. P. 2001. https://doi.org/10.1007/s10895-017-2139-6
- Zasedateleva O.A., Vasiliskov V.A., Surzhikov S.A., Kuznetsova V.E., Shershov V.E., Guseinov T.O. et al. dUTPs conjugated with zwitterionic Cy3 or Cy5 fluorophore analogues are effective substrates for DNA amplification and labelling by Taq polymerase // Nucleic Acids Res. 2018. V. 46. № 12. Article e73. https://doi.org/10.1093/nar/gky247
- Kuznetsova V.E., Shershov V.E., Guseinov T.O., Miftakhov R.A., Solyev P.N., Novikov R.A. et al. Synthesis of Cy5-labelled C5-alkynyl-modified cytidine triphosphates via Sonogashira coupling for DNA labelling // Bioorg. Chem. 2023. V. 131. Article 106315. https://doi.org/10.1016/j.bioorg.2022.106315
- Hunziker J. Synthesis of 5-(2-amino-2-deoxy-β-d-glucopyranosyloxymethyl)-2′-deoxyuridine and its incorporation into oligothymidylates // Bioorganic Med. Chem. Lett. 1999. V. 9. № 2. P. 201. https://doi.org/10.1016/S0960-894X(98)00700-8
- Matsuura K., Hibino M., Ikeda T., Yamada Y., Kobayashi K. Self‐organized glycoclusters along DNA: Effect of the spatial arrangement of galactoside residues on cooperative lectin recognition // Chem. Eur. J. 2004. V. 10. № 2. P. 352. https://doi.org/10.1002/chem.200305465
- Лапа С.А., Ромашова К.С., Спицын М.А., Шершов В.Е., Кузнецова В.Е., Гусейнов Т.О. и др. Получение модифицированных комбинаторных ДНК-библиотек методом ПЦР в обратной эмульсии с последующим разделением цепей // Молекулярная биология. 2018. Т. 52. № 6. С. 984. (Lapa S.A., Romashova K.S., Spitsyn M.A. Shershov V.E., Kuznetsova V.E., Guseinov T.O., Zasedateleva O.A., Radko S.P., Timofeev E.N., Lisitsa A.V., Chudinov A.V. at al. Preparation of modified combinatorial DNA libraries via emulsion PCR with subsequent strand separation // Mol. Biol. 2018. V. 52. № 6. P. 854. https://doi.org/10.1134/S0026893318060110)
- Чудинов А.В., Киселева Я.Ю., Кузнецова В.Е., Шершов В.Е., Спицын М.А., Гусейнов Т.О. и др. Ферментативный синтез ДНК с высокой степенью модификации // Молекулярная биология. 2017. Т. 51. № 3. С. 534. (Chudinov A.V., Kiseleva Y.Y., Kuznetsov V.E., Shershov V.E., Spitsyn M.A., Guseinov T.O. et al. Structural and functional analysis of biopolymers and their complexes: enzymatic synthesis of high-modified DNA // Mol. Biol. 2017. V. 51. № 3. P. 474. https://doi.org/10.1134/S0026893317030025)
- Zasedateleva O.A., Surzhikov S.A., Shershov V.E., Miftakhov R.A., Yurasov D.A., Kuznetsova V.E., Chudinov A.V. PCR incorporation of dUMPs modified with aromatic hydrocarbon substituents of different hydrophilicities: Synthesis of C5-modified dUTPs and PCR studies using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases // Bioorg. Chem. 2020. V. 99. Article 103829. https://doi.org/10.1016/j.bioorg.2020.103829)
- Lapa S.A., Chudinov A.V., Timofeev E.N. The toolbox for modified aptamers // Mol. Biotechnol. 2016. V. 58. № 2. P. 79. https://doi.org/10.1007/s12033-015-9907-9
- Debela A.M., Thorimbert S., Hasenknopf B., O’Sullivan C.K., Ortiz M. Electrochemical primer extension for the detection of single nucleotide polymorphisms in the cardiomyopathy associated MYH7 gene // Chem. Commun. 2016. V. 52. P. 757. https://doi.org/10.1039/C5CC07762A
- Magriñá I., Toldrà A., Campàs M., Ortiz M., Simonova A., Katakis I., Hocek M. et al. Electrochemical genosensor for the direct detection of tailed PCR amplicons incorporating ferrocene labelled dATP // Biosens. Bioelectron. 2019. V. 134. P. 76. https://doi.org/10.1016/j.bios.2019.03.060
- Simonova A., Magriñá I., Sýkorová V., Pohl R., Ortiz M., Havran L., et al. Tuning of oxidation potential of ferrocene for ratiometric redox labeling and coding of nucleotides and DNA // Chem. Eur. J. 2020. V. 26. P. 1286. https://doi.org/10.1002/chem.201904700
- Ortiz M., Jauset-Rubio M., Kodr D., Simonova A., Hocek M., O’Sullivan C.K. Solid-phase recombinase polymerase amplification using ferrocene-labelled dNTPs for electrochemical detection of single nucleotide polymorphisms // Biosens. Bioelectron. 2022. V. 198. Article 113825. https://doi.org/10.1016/j.bios.2021.113825
- Ortiz M., Jauset-Rubio M., Trummer O., Foessl I., Kodr D., Acero J.L. et al. Generic platform for the multiplexed targeted electrochemical detection of osteoporosis-associated single nucleotide polymorphisms using recombinase polymerase solid-phase primer elongation and ferrocene-modified nucleoside triphosphates // ACS Cent. Sci. 2023. V. 9. P. 1591. https://doi.org/10.1021/acscentsci.3c00243
- Kodr D., Yenice C.P., Simonova A., Pavlović Saftić D., Pohl R., Sýkorová V., Ortiz M., Havran L., Fojta M., Lesnikowski Z.J., O’Sullivan C.K., Hocek M. Carborane- or metallacarborane-linked nucleotides for redox labeling. orthogonal multipotential coding of all four DNA bases for electrochemical analysis and sequencing // J. Am. Chem. Soc. 2021. V. 143. P. 7124. https://doi.org/10.1021/jacs.1c02222
- Havranová‐Vidláková P., Krömer M., Sýkorová V., Trefulka M., Fojta M., Havran L., Hocek M. Vicinal diol‐tethered nucleobases as targets for DNA redox labeling with osmate complexes // ChemBioChem. 2020. V. 21. P. 171. https://doi.org/10.1002/cbic.201900388
- Debela A.M., Ortiz M., Beni V., Thorimbert S., Lesage D., Cole R.B. et al. Biofunctionalization of polyoxometalates with DNA primers, their use in the polymerase chain reaction (PCR) and electrochemical detection of PCR products // Chem. Eur. J. 2015. V. 21. № 49. P. 17721. https://doi.org/10.1002/chem.201502247
- Ortiz M., Debela A.M., Svobodova M., Thorimbert S., Lesage D., Cole R.B. et al. PCR incorporation of polyoxometalate modified deoxynucleotide triphosphates and their application in molecular electrochemical sensing of yersinia pestis // Chem. Eur. J. 2017. V. 23. № 44. P. 10597. https://doi.org/10.1002/chem.201701295
- Cahová H., Havran L., Brázdilová P., Pivoňková H., Pohl R., Fojta M., Hocek M. Aminophenyl‐and nitrophenyl‐labeled nucleoside triphosphates: Synthesis, enzymatic incorporation, and electrochemical detection // Angew. Chem. Int. Ed. 2008. V. 47. P. 2059. https://doi.org/10.1002/anie.200705088
- Balintová J., Pohl R., Horáková P., Vidláková P., Havran L., Fojta M., Hocek M. Anthraquinone as a Redox Label for DNA: Synthesis, enzymatic incorporation, and electrochemistry of anthraquinone‐modified nucleosides, nucleotides, and DNA // Chem. Eur. J. 2011. V. 17. P. 14063. https://doi.org/10.1002/chem.201101883
- Simonova A., Balintová J., Pohl R., Havran L., Fojta M., Hocek M. Methoxyphenol and dihydrobenzofuran as oxidizable labels for electrochemical detection of DNA // ChemPlusChem. 2014. V. 79. P. 1703. https://doi.org/10.1002/cplu.201402194
- Simonova A., Havran L., Pohl R., Fojta M., Hocek M. Phenothiazine-linked nucleosides and nucleotides for redox labelling of DNA // Org. Biomol. Chem. 2017. V. 15. P. 6984. https://doi.org/10.1039/C7OB01439B
- Vosáhlová J., Koláčná L., Daňhel A., Fischer J., Balintová J., Hocek M. et al. Voltammetric and adsorption study of 4-nitrophenyl-triazole-labeled 2′-deoxycytidine and 7-deazaadenosine nucleosides at boron-doped diamond electrode // J. Electroanal. Chem. 2018. V. 821. P. 111. https://doi.org/10.1016/j.jelechem.2018.01.003
- Horáková P., Macíčková-Cahová H., Pivoňková H., Špaček J., Havran L., Hocek M., Fojta M. Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl tranferase. Application in electrochemical DNA hybridization and protein-DNA binding assays // Org. Biomol. Chem. 2011. V. 9. P. 1366. https://doi.org/10.1039/C0OB00856G
- Suprun E.V., Khmeleva S.A., Kutdusova G.R., Duskaev I.F., Kuznetsova V.E., Lapa S.A. et al. Deoxyuridine triphosphates modified with tyrosine or tryptophan aromatic groups for direct electrochemical detection of double-stranded DNA // Electrochim. Acta. 2020. V. 362. Article 137105. https://doi.org/10.1016/j.electacta.2020.137105
- Suprun E.V., Khmeleva S.A., Kutdusova G.R., Ptitsyn K.G., Kuznetsova V.E., Lapa S.A., Chudinov A.V., Radko S.P. Deoxyuridine triphosphates modified with tyrosine aromatic groups for direct electrochemical detection of double-stranded DNA products of isothermal recombinase polymerase amplification // Electrochem. Commun. 2021. V. 131. Article 107120. https://doi.org/10.1016/j.elecom.2021.107120
- Suprun E.V., Khmeleva S.A., Bibik K.V., Ptitsyn K.G., Kurbatov L.K., Radko S.P. Polymerase incorporation of fluorescein or rhodamine modified 2′-deoxyuridine-5′-triphosphates into double-stranded DNA for direct electrochemical detection // J. Pharm. Biomed. Anal. 2023. V. 236. Article 115737. https://doi.org/10.1016/j.jpba.2023.115737
- Vidláková P., Pivoňková H., Fojta M., Havran L. Electrochemical behavior of anthraquinone- and nitrophenyl-labeled deoxynucleoside triphosphates: A contribution to development of multipotential redox labeling of DNA // Monatsh. Chem. 2015. V. 146. P. 839. https://doi.org/10.1007/s00706-015-1435-6
- Raindlová V., Pohl R., Klepetářová B., Havran L., Šimková E., Horáková P. et al. Synthesis of hydrazone‐modified nucleotides and their polymerase incorporation onto DNA for redox labeling // ChemPlusChem. 2012. V. 77. P. 652. https://doi.org/10.1002/cplu.201200056
- Pheeney C.G., Guerra L.F., Barton J.K. DNA sensing by electrocatalysis with hemoglobin // Proc. Natl. Acad. Sci. U.S.A. 2012. V. 109. № 29. P. 11528. https://doi.org/10.1073/pnas.1201551109
- Gorodetsky A.A., Green O., Yavin E., Barton J.K. Coupling into the base pair stack is necessary for DNA-mediated electrochemistry // Bioconjug. Chem. 2007. V. 18. № 5. P. 1434. https://doi.org/10.1021/bc0700483
- Gorodetsky A.A., Hammond W.J., Hill M.G., Slowinski K., Barton, J.K. Scanning electrochemical microscopy of DNA monolayers modified with Nile Blue // Langmuir. 2008. V. 24. № 24. P. 14282. https://doi.org/10.1021/la8029243
- Dudová Z., Špaček J., Tomaško M., Havran L., Pivoňková H., Fojta M. Electrochemical behavior of 7-deazaguanine-and 7-deazaadenine-modified DNA at the hanging mercury drop electrode // Monatsh. Chem. 2016. V. 147. P. 3. https://doi.org/10.1007/s00706-015-1584-7
- Danhel A., Trosanova Z., Balintova J., Havran L., Hocek M., Barek J., Fojta M. Voltammetric analysis of 5-(4-Azidophenyl)-2′-deoxycytidine nucleoside and azidophenyl-labelled single- and double-stranded DNAs // Electrochim. Acta. 2016. V. 215. P. 72. https://doi.org/10.1016/j.electacta.2016.08.096
- Balintová J., Plucnara M., Vidláková P., Pohl R., Havran L., Fojta M., Hocek M. Benzofurazane as a new redox label for electrochemical detection of DNA: towards multipotential redox coding of DNA bases // Chem. Eur. J. 2013. V. 19. № 38. P. 12720. https://doi.org/10.1002/chem.201301868
- Ménová P., Cahová H., Plucnara M., Havran L., Fojta M., Hocek M. Polymerase synthesis of oligonucleotides containing a single chemically modified nucleobase for site-specific redox labelling // Chem. Commun. 2013. V. 49. P. 4652. https://doi.org/10.1039/C3CC41438H
- Hermanová M., Orság P., Balintová J., Hocek M., Fojta M. Dual redox labeling of DNA as a tool for electrochemical detection of p53 protein-DNA interactions // Anal. Chim. Acta. 2019. V. 1050. P. 123. https://doi.org/10.1016/j.aca.2018.10.053
- Daňhel A., Trošanová Z., Balintová J., Simonová A., Pospíšil L., Cvačka J. et al. Electrochemical reduction of azidophenyl-deoxynucleoside conjugates at mercury surface // Electrochim. Acta. 2018. V. 259. P. 377. https://doi.org/10.1016/j.electacta.2017.10.128
- Danhel A., Raindlova V., Havran L., Barek J., Hocek M., Fojta M. Voltammetric study of dsDNA modified by multi-redox label based on N-methyl-4-hydrazino-7-nitrobenzofurazan // Electrochim. Acta. 2014. V. 129. P. 348. https://doi.org/10.1016/j.electacta.2014.02.137
- Kodr D., Ortiz M., Sýkorová V., Yenice C.P., Lesnikowski Z.J., O’Sullivan C.K., Hocek M. Normalized multipotential redox coding of DNA bases for determination of total nucleotide composition // Anal. Chem. 2023. V. 95. № 34. P. 12586. https://doi.org/10.1021/acs.analchem.3c02023
- Brázdilová P., Vrábel M., Pohl R., Pivoňková H., Havran L., Hocek M., Fojta M. Ferrocenylethynyl derivatives of nucleoside triphosphates: synthesis, incorporation, electrochemistry, and bioanalytical applications // Chem. Eur. J. 2007. V. 13. P. 9527. https://doi.org/10.1002/chem.200701249
- Ortiz M., Jauset-Rubio M., Skouridou V., Machado D., Viveiros M., Clark T.G. et al. Electrochemical detection of single-nucleotide polymorphism associated with rifampicin resistance in Mycobacterium tuberculosis using solid-phase primer elongation with ferrocene-linked redox-labeled nucleotides // ACS Sensors. 2021. V. 6. P. 4398. https://doi.org/10.1021/acssensors.1c01710
- Di Giusto D.A., Wlassoff W.A., Giesebrecht S., Gooding J.J., King G.C. Multipotential electrochemical detection of primer extension reactions on DNA self-assembled monolayers // J. Am. Chem. Soc. 2004. V. 126. No. 13. P. 4120. https://doi.org/10.1021/ja0319036
- Di Giusto D.A., Wlassoff W.A., Giesebrecht S., Gooding J.J., King G.C. Enzymatic synthesis of redox‐labeled RNA and dual‐potential detection at DNA‐modified electrodes // Angew. Chem. Int. Ed. 2004. V. 43. P. 2809. https://doi.org/10.1002/anie.200352977
- Wlassoff W.A., King G.C. Ferrocene conjugates of dUTP for enzymatic redox labelling of DNA // Nucleic Acids Res. 2002. V. 30. Article e58. https://doi.org/10.1093/nar/gnf058
- Yeung S.S., Lee T.M., Hsing, I.M. Electrochemical real-time polymerase chain reaction // J. Am. Chem. Soc. 2006. V. 128. P. 13374. https://doi.org/10.1021/ja065733j
- Suprun E.V., Khmeleva S.A., Duskaev I.F., Kurbatov L.K., Kuznetsova V.E., Shershov V.E. et al. Polymerase incorporation of 4-nitrophenyl modified 2′-deoxyuridine-5′-triphosphates into double-stranded DNA for direct electrochemical detection // J. Pharm. Biomed. Anal. 2024. V. 241. Article 115977. https://doi.org/10.1016/j.jpba.2024.115977
- Zahran M. Conducting dyes as electro-active monomers and polymers for detecting analytes in biological and environmental samples // Heliyon. 2023. V. 9. № 9. Article e19943. https://doi.org/10.1016/j.heliyon.2023.e19943
- Weinberg N.L., Weinberg H.R. Electrochemical oxidation of organic compounds // Chem. Rev. 1968. V. 68. № 4. P. 449. https://doi.org/10.1021/cr60254a003
- Enache T.A., Oliveira‐Brett A.M. Pathways of electrochemical oxidation of indolic compounds // Electroanalysis. 2011. V. 23. № 6. P. 1337. https://doi.org/10.1002/elan.201000671
- Enache T.A., Oliveira-Brett A.M. Phenol and para-substituted phenols electrochemical oxidation pathways // J. Electroanal. Chem. 2011. V. 655. № 1. P. 9. https://doi.org/10.1016/j.jelechem.2011.02.022
- Suprun E.V., Shumyantseva, V.V., Archakov A.I. Protein electrochemistry: application in medicine. A review // Electrochim. Acta. 2014. V. 140. P. 72. https://doi.org/10.1016/j.electacta.2014.03.089
- Smyth M.R., Smyth W.F. Voltammetric methods for the determination of foreign organic compounds of biological significance. A review // Analyst. 1978. V. 103. P. 529. https://doi.org/10.1039/AN9780300529
- Zuman P., Fijalek Z., Dumanovic D., Sužnjević D. Polarographic and electrochemical studies of some aromatic and heterocyclic nitro compounds, part I: General mechanistic aspects // Electroanalysis. 1992. V. 4. P. 783. https://doi.org/10.1002/elan.1140040808
- Laviron E., Vallat A., Meunier-Prest R. The reduction mechanism of aromatic nitro compounds in aqueous medium: Part V. The reduction of nitrosobenzene between pH 0.4 and 13 // J. Electroanal. Chem. 1994. V. 379. P. 427. https://doi.org/10.1016/0022-0728(94)87167-1
- Shikata M. The electrolysis of nitrobenzene with the mercury dropping cathode // Trans. Faraday Soc. 1925. V. 21. P. 42. https://doi.org/10.1039/TF9252100042
- Magrina I., Ortiz M., Simonova A., HocekM., O’Sullivan C.K., Forster R.J. Ferrocene-containing DNA monolayers: Influence of electrostatics on the electron transfer dynamics // Langmuir. 2021. V. 37. № 11. P. 3359. https://doi.org/10.1021/acs.langmuir.0c03485
- Batterjee S.M., Marzouk M.I., Aazab M.E., El‐Hashash M.A. The electrochemistry of some ferrocene derivatives: redox potential and substituent effects // Appl. Organomet. Chem. 2003. V. 1. No. 5. P. 291. https://doi.org/10.1002/aoc.414
- Langer P.R., Waldrop A.A., Ward D.C. Enzymatic synthesis of biotin-labeled polynucleotides: Novel nucleic acid affinity probes // Proc. Natl. Acad. Sci. U.S.A. 1981. V. 78. № 11. P. 6633. https://doi.org/10.1073/pnas.78.11.663
- Brakmann S., Löbermann S. High‐density labeling of DNA: Preparation and characterization of the target material for single‐molecule sequencing // Angew. Chem. Int. Ed. 2001. V. 40. № 8. P. 1427. https://doi.org/10.1002/1521-3773(20010417)40:8<1427::AID-ANIE1427>3.0.CO;2-T
- Thoresen L.H., Jiao G.S., Haaland W.C., Metzker M.L., Burgess K. Rigid, conjugated, fluoresceinated thymidine triphosphates: syntheses and polymerase mediated incorporation into DNA analogues // Chem. Eur. J. 2003. V. 9. № 19. P. 4603. https://doi.org/10.1002/chem.200304944
- Kuwahara M., Hanawa K., Ohsawa K., Kitagata R., Ozaki H., Sawai H. Direct PCR amplification of various modified DNAs having amino acids: Convenient preparation of DNA libraries with high-potential activities for in vitro selection // Bioorg. Med. Chem. 2006. V. 14. № 8. P. 2518. https://doi.org/10.1016/j.bmc.2005.11.030
- Sawai H., Nagashima J., Kuwahara M., Kitagata R., Tamura T., Matsui I. Differences in substrate specificity of C (5)‐substituted or C (5)‐unsubstituted pyrimidine nucleotides by DNA polymerases from thermophilic bacteria, archaea, and phages // Chem. Biodiversity. 2007. V. 4. P. 1979. https://doi.org/10.1002/cbdv.200790165
- Sawai H., Ozaki-Nakamura A., Mine M., Ozaki H. Synthesis of new modified DNAs by hyperthermophilic DNA polymerase: Substrate and template specificity of functionalized thymidine analogues bearing an sp3-hybridized carbon at the C5 α-position for several DNA polymerases // Bioconjug. Chem. 2002. V. 13. P. 309. https://doi.org/10.1021/bc010088l
- Иконникова А.Ю., Лисица Т.С., Шершов В.Е., Спицын М.А., Гусейнов Т.О., Фесенко Д.О. и др. Влияние строения флуоресцентно-меченных производных нуклеотидов на эффективность их встраивания в ДНК в ходе полимеразной цепной реакции // Биофизика. 2017. Т. 62. № 6. С. 1093. (Ikonnikova A.Y., Lisitsa T.S., Shershov V.E., Spitsyn M.A., Guseinov T.O., Fesenko D.O. et al. The effect of the structure of fluorescently labeled nucleotide derivatives on the efficiency of their incorporation in DNA in the polymerase chain reaction // Biophysics. 2017. V. 62. P. 900. https://doi.org/10.1134/S0006350917060082)
- Ortiz D.A., Loeffelholz M.J. Practical challenges of point-of-care testing // Clin. Lab. Med. 2023. V. 43. P. 155. https://doi.org/10.1016/j.cll.2023.02.002
- De Falco M., De Felice M., Rota F., Zappi D., Antonacci A., Scognamiglio V. Next-generation diagnostics: Augmented sensitivity in amplification-powered biosensing // Trends Anal. Chem. 2022. V. 148. Article 116538. https://doi.org/10.1016/j.trac.2022.116538
- Li J., Macdonald J. Advances in isothermal amplification: Novel strategies inspired by biological processes // Biosens. Bioelectron. 2015. V. 64. P. 196. https://doi.org/10.1016/j.bios.2014.08.069
- Lobato I.M., O’Sullivan C.K. Recombinase polymerase amplification: Basics, applications and recent advances // Trends Anal. Chem. 2018. V. 98. P. 19. https://doi.org/10.1016/j.trac.2017.10.015
- Бодулев О.Л., Сахаров И.Ю. Изотермические методы амплификации нуклеиновых кислот и их применение в биоанализе // Биохимия. 2020. Т. 85. № 2. С. 174. https://doi.org/10.31857/S0320972520020037 (Bodulev O.L., Sakharov I.Y. Isothermal nucleic acid amplification techniques and their use in bioanalysis // Biochemistry (Mosc). 2020. V. 85. P. 147. https://doi.org/10.1134/S0006297920020030)
- Mayboroda O., Katakis I., O’Sullivan C.K. Multiplexed isothermal nucleic acid amplification // Anal. Biochem. 2018. V. 545. P. 20. https://doi.org/10.1016/j.ab.2018.01.005
- Лапа С.А., Шингарева А.А., Файзулоев Е.Б., Аммур Ю.И., Шершов В.Е., Чудинов А.В. Видовая идентификация коронавируса SARS-COV-2 по консервативному участку E-гена // Биоорганическая химия. 2023. Т. 49. № 5. С. 543. (Lapa S.A., Shingareva A.A., Faizuloev E.B., Ammour Y I., Shershov V.E., Chudinov A.V. Species-level identification of SARS-CoV-2 by an E gene conservative site // Russ. J. Bioorg. Chem. 2023. V. 49. P. 912. https://doi.org/10.1134/S1068162023040131)
- Ménová P., Raindlová V., Hocek M. Scope and limitations of the nicking enzyme amplification reaction for the synthesis of base-modified oligonucleotides and primers for PCR // Bioconjug. Chem. 2013. V. 24. P. 1081. https://doi.org/10.1021/bc400149q
- Шершов В.Е., Лапа С.А., Левашова А.И., Шишкин И.Ю., Штылев Г.Ф., Шекалова Е.Ю. и др. Синтез флуоресцентно-меченых нуклеотидов для маркирования продуктов изотермической амплификации // Биоорганическая химия. 2023. Т. 49. № 6. С. 649. (Shershov V.E., Lapa S.A., Levashova A.I., Shishkin I.Y., Shtylev G.F., Shekalova E.Y. et al. Synthesis of fluorescent-labeled nucleotides for labeling of isothermal amplification products // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1151. https://doi.org/10.1134/S1068162023050242)
Supplementary files
