Chronoamperometric determination of antioxidant capacity using iron complex with 2,2’-bipyridine
- Authors: Salimgareeva E.R.1, Gerasimova E.L.1, Karmanova A.V.1, Salikova K.K.1, Saraeva S.Y.1, Ivanova A.V.1
-
Affiliations:
- Ural Federal University named after the First President of Russia B.N. Yeltsin
- Issue: Vol 79, No 6 (2024)
- Pages: 563-572
- Section: ORIGINAL ARTICLES
- Submitted: 31.01.2025
- URL: https://rjmseer.com/0044-4502/article/view/650204
- DOI: https://doi.org/10.31857/S0044450224060039
- EDN: https://elibrary.ru/tutqbe
- ID: 650204
Cite item
Abstract
The proposed approach to the determination of antioxidants with different hydrophilicity is based on the use of iron(III) complex with bipyridine as an oxidant model and chronoamperometric registration of the analytical signal. The oxidant was chosen due to its solubility in aqueous, organic and aqueous-organic media. The following conditions for registration of chronoamperograms were chosen: background composition (acetonitrile-acetate buffer solution with pH 3.6 (9 : 1)), background electrolyte (LiClO4), potential (E = 1.25 V), current registration time (80 s). Antioxidants soluble in organic and aqueous-organic media were studied: α-tocopherol, quercetin, catechin, caffeic acid. The ranges of determined concentrations are (0.5-4) × 10-4 M. The antioxidant capacity (AOE) of ethanolic extracts of medicinal plant raw materials was determined. A high correlation of AOE values obtained by chronoamperometric and spectrophotometric methods is observed, but only for the objects whose intrinsic coloration does not contribute to the absorption value of Fe(II)-bipyridine complex. Application of the proposed approach and the potentiometric method using the system K3[Fe(CN)6]/K4[Fe(CN)6] showed that the values obtained by the potentiometric method are significantly lower for most of the investigated infusions. Thus, when analyzing multicomponent objects containing substances with different hydrophilicity, it is advisable to use oxidizing agents with different solubility, such as Fe(III)-bipyridine complex.
About the authors
E. R. Salimgareeva
Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: e.l.gerasimova@urfu.ru
Chemical Technology Institute
Russian Federation, 620002 EkaterinburgE. L. Gerasimova
Ural Federal University named after the First President of Russia B.N. Yeltsin
Author for correspondence.
Email: e.l.gerasimova@urfu.ru
Chemical Technology Institute
Russian Federation, 620002 Ekaterinburg620002 EkaterinburgA. V. Karmanova
Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: e.l.gerasimova@urfu.ru
Chemical Technology Institute
Russian Federation, 620002 EkaterinburgK. K. Salikova
Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: e.l.gerasimova@urfu.ru
Chemical Technology Institute
Russian Federation, 620002 EkaterinburgS. Y. Saraeva
Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: e.l.gerasimova@urfu.ru
Chemical Technology Institute
Russian Federation, 620002 EkaterinburgA. V. Ivanova
Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: e.l.gerasimova@urfu.ru
Chemical Technology Institute
Russian Federation, 620002 EkaterinburgReferences
- Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. 5th Ed. Oxford, UK: Oxford University Press, 2015. Р. 961.
- Меньщикова Е.Б., Зенков Н.К., Ланкин В.З., Бондарь И.А., Труфакин В.А. Окислительный стресс: Патологические состояния и заболевания. Новосибирск: Сибирское университетское издательство, 2017. С. 284.
- Apak R., Ozyurek M., Guklu K., Capanoglu E. Antioxidant activity/capacity measurement. I. Classification, physico-chemical principles, mechanisms, and electron transfer (ET)-based assays // J. Agric. Food. Chem. 2016. V. 64. P. 997.
- Apak R., Ozyurek M., Guklu K., Capanoglu E. Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer (HAT)-Based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assay // J. Agric. Food Chem. 2016. V. 64. P. 1028.
- Ilyasov I.R., Beloborodov V.L., Selivanova I.A., Terekhov R.P. ABTS/PP Decolorization assay of antioxidant capacity reaction pathways // Int. J. Mol. Sci. 2020. V. 21. P. 1131.
- Зиятдинова Г.К., Зиганшина Э.Р., Будников Г.К. Использование поверхностно-активных веществ в вольтамперометрическом анализе // Журн. аналит. химии. 2012. Т. 67. С. 968. (Ziyatdinova G.K., Ziganshina E.R., Budnikov H.C. Application of surfactants in voltammetric analysis // J. Anal. Chem. 2012. V. 67. P. 869.)
- Sharma Sh., Kori Sh., Parmar A. Surfactant mediated extraction of total phenolic contents (TPC) and antioxidants from fruits juices // Food Chem. 2015. V. 185. P. 284.
- La J.W., Kim M.J., Lee J.H. Evaluation of solvent effects on the DPPH reactivity for determining the antioxidant activity in oil matrix // Food Sci. Biotechnol. 2021. V. 30. P. 367.
- Зиятдинова Г.К., Жупанова А.С., Будников Г.К. Электрохимические сенсоры для одновременного определения фенольных антиоксидантов // Журн. аналит. химии. 2022. Т. 77. С. 129. (Ziyatdinova G.K., Zhupanova A.S., Budnikov H.C. Electrochemical sensors for the simultaneous detection of phenolic antioxidants // J. Anal. Chem. 2022. V. 77. P. 155.)
- Ziyatdinova G., Kalmykova A., Kupriyanova O. Constant–current coulometry with electrogenerated titrants as a novel tool for the essential oils screening using total antioxidant parameters // Antioxidants. 2022. V. 11. Article 1749.
- Ivanova A.V., Gerasimova E.L., Brainina Kh.Z. Potentiometric study of antioxidant activity: Development and prospects // Crit. Rev. Anal. Chem. 2015. V. 45. P. 311.
- Иванова А.В., Герасимова Е.Л., Кравец И.А., Матерн А.И. Потенциометрическое определение водорастворимых антиоксидантов с использованием комплексов металлов // Журн. аналит. химии. 2015. Т. 70. № 2. С. 156. (Ivanova A.V., Gerasimova E.L., Kravets I.A., Matern A.I. Potentiometric determination of water-soluble antioxidants using metal complexes // J. Anal. Chem. 2015. V. 70. P. 173.)
- Ivanova A.V., Gerasimova E.L., Gazizullina E.R. An integrated approach to the investigation of antioxidant properties by potentiometry // Anal. Chim. Acta. 2020. V. 1111. P. 83.
- Брайнина Х.З., Варзакова Д.П., Герасимова Е.Л. Хроноамперометрический метод определения интегральной антиоксидантной активности // Журн. аналит. химии. 2012. Т. 67. С. 409. (Brainina Kh.Z., Varzakova D.P., Gerasimova E.L. A chronoamperometric method for determining total antioxidant activity // J. Anal. Chem. 2012. V. 67. P. 364.)
- Varzakova D.P., Brainina Kh.Z., Kazakov Y.E., Vidrevich M.B. Noninvasive electrochemical antioxidant activity estimation: Saliva analysis // Biointerface Res. Appl. Chem. 2018. V. 8. Р. 3383.
- Naji K.M., Thamer F.H., Numan A.A., Dauqan E.M., Alshaibi Ya.M., D'souza M.R. Ferric-bipyridine assay: A novel spectrophotometric method for measurement of antioxidant capacity // Heliyon. 2020. V. 6. Article e03162.
- Santana W.E.L., Nunez C.V., Moya H.D. Antioxidant activity and polyphenol content of some Brazilian medicinal plants exploiting the formation of the Fe(II)/2,2'-bipyridine complexes // Nat. Prod. Commun. 2015. V. 10. P. 1821.
- Экспериандова Л.П., Беликов К.Н., Химченко С.В., Бланк Т.А. Еще раз о пределах обнаружения и определения // Журн. аналит. химии. 2010. Т. 65. С. 229 (Eksperiandova L.P., Belikov K.N., Khimchenko S.V., Blank T.A. Once again about determination and detection limits // J. Anal. Chem. 2010. V. 65. Р. 223.)
- Subhaswaraj P., Sowmya M., Bhavana V., Dyavaiah M., Siddhardha B. Determination of antioxidant activity of Hibiscus sabdariffa and Croton caudatus in Saccharomyces cerevisiae model system // J. Food Sci. Technol. 2017. V. 54. P. 2728.
Supplementary files
