Ecological indexes in analytical chemistry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of environmentally safe methods of analytical chemistry has been one of the dominant directions of scientific research in recent decades. Ecological indexes have become a valuable tool for assessing and quantitatively determining the impact of conducting chemical analysis on the environment. This review article discusses the main ecological indexes presented in the literature, including aspects such as the safety of chemical reagents used, analysis productivity, energy consumption, and waste generation. The review reflects the latest achievements in the field of “green” indexes and their potential role in transitioning to more ecological and sustainable analytical methods.

Full Text

Restricted Access

About the authors

A. Yu. Shishov

St. Petersburg State University

Author for correspondence.
Email: andrey.shishov.rus@gmail.com

Institute of Chemistry

Russian Federation, 198504 St. Petersburg

O. B. Mokhodoeva

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: andrey.shishov.rus@gmail.com
Russian Federation, 119991 Moscow

References

  1. Gałuszka A., Migaszewski Z., Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices // TrAC, Trends Anal. Chem. 2013. V. 50. P. 78. https://doi.org/10.1016/j.trac.2013.04.010
  2. Sajid M., Płotka-Wasylka J. Green analytical chemistry metrics: A review // Talanta. 2022. V. 238. 123046. https://doi.org/10.1016/j.talanta.2021. Article. 123046
  3. Martínez J., Cortés J. F., Miranda R. Green Chemistry Metrics, A Review // Processes. 2022. V. 10. № 7. Article 1274. https://doi.org/10.3390/pr10071274
  4. https://www.atsdr.cdc.gov/toxprofiledocs (Agency for Toxic Substances and Disease Registry). (26.12.2023).
  5. ГОСТ 12.1.007-76. Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности. М.: Стандартинформ, 2007. 7 с.
  6. Swanson M. B., Davis G. A., Kincaid L. E., Schultz T. W., Bartmess J. E., Jones S. L., George E. L. A screening method for ranking and scoring chemicals by potential human health and environmental impacts // Environ. Toxicol. Chem. 1997. V. 16. I. 2. P. 372. https://doi.org/10.1002/etc.5620160237
  7. https://www.nemi.gov (National Environmental Methods Index). (26.12.2023).
  8. www.epa.gov/toxics-release-inventory-tri-program/tri-listed-chemicals (Toxics Release Inventory (TRI) Program, United States Environmental Protection Agency). (26.12.2023).
  9. https://www.epa.gov/rcra (The Resource Conservation and Recovery Act (RCRA), United States Environmental Protection Agency). (26.12.2023).
  10. Keith L. H., Gron L. U., Young J. L. Green analytical methodologies // Chem. Rev. 2007. V. 107. № 6. P. 2695. https://doi.org/10.1021/cr068359e
  11. Raynie D., Driver J. Green assessment of chemical methods / Proceedings of the 13th Annual Green Chemistry and Engineering Conference. 23–25 June, 2009. College Park, Maryland, USA.
  12. Hartman R., Helmy R., Al-Sayah M., Welch C. J. Analytical method volume intensity (AMVI): A green chemistry metric for HPLC methodology in the pharmaceutical industry // Green Chem. 2011. V. 13. № 4. P. 934. https://doi.org/10.1039/C0GC00524J
  13. Gaber Y., Törnvall U., Kumar M. A., Amin M. A., Hatti-Kaul R. HPLC-EAT (Environmental Assessment Tool): A tool for profiling safety, health and environmental impacts of liquid chromatography methods // Green Chem. 2011. V. 13. № 8. P. 2021. https://doi.org/10.1039/C0GC00667J
  14. Gałuszka A., Migaszewski Z. M., Konieczka P., Namieśnik J. Analytical Eco-Scale for assessing the greenness of analytical procedures // Trends Anal. Chem. 2012. V. 37. P. 61. https://doi.org/10.1016/j.trac.2012.03.013
  15. Płotka-Wasylka J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index // Talanta. 2018. V. 181. P. 204. https://doi.org/10.1016/j.talanta.2018.01.013
  16. Ballester-Caudet A., Campíns-Falcó P., Pérez B., Sancho R., Lorente M., Sastre G., González C. A new tool for evaluating and/or selecting analytical methods: summarizing the information in a hexagon // Trends Anal. Chem. 2019. V. 118. P. 538. https://doi.org/10.1016/j.trac.2019.06.015
  17. Nowak P.M., Kościelniak P. What color is your method? Adaptation of the RGB additive color model to analytical method evaluation // Anal. Chem. 2019. V. 91. № 16. P. 10343. https://doi.org/10.1021/ACS.ANALCHEM.9B01872
  18. Pena-Pereira F., Wojnowski W., Tobiszewski M. AGREE – Analytical GREEnness Metric Approach and Software // Anal. Chem. 2020. V. 92. № 14. P. 10076. https://doi.org/10.1021/acs.analchem.0c01887
  19. Płotka-Wasylka J., Wojnowski W. Complementary green analytical procedure index (ComplexGAPI) and software // Green Chem. 2021. V. 23. P. 8657. https://doi.org/10.1039/D1GC02318G
  20. Anastas P.T. Green chemistry and the role of analytical methodology development // Crit. Rev. Anal. Chem. 1999. V. 29. № 3. P. 167. https://doi.org/10.1080/10408349891199356
  21. Marcinkowska R., Namieśnik J., Tobiszewski M. Green and equitable analytical chemistry // Curr. Opin. Green Sustain. Chem. 2019. V. 19. P. 19. https://doi.org/10.1016/j.cogsc.2019.04.003
  22. Nowak P.M., P. Kościelniak P., Tobiszewski M., Ballester-Caudet A., Campíns-Falcó P. Overview of the three multicriteria approaches applied to a global assessment of analytical methods // Trends Anal. Chem. 2020. V. 133. Article. 116065. https://doi.org/10.1016/J.TRAC.2020.116065
  23. Nowak P.M., Wietecha-Posłuszny R., Pawliszyn J. White Analytical Chemistry: An approach to reconcile the principles of Green Analytical Chemistry and functionality // Trends Anal. Chem. 2021. V. 138. Article. 116223. https://doi.org/10.1016/j.trac.2021.116223
  24. Plastiras O.-E., Gionfriddo E., Samanidou V. Ch. 5. Sample preparation in a green perspective / Green Approaches for Chemical Analysis. 2023. P. 151. https://doi.org/10.1016/B978-0-12-822234-8.00008-1
  25. Nowak P.M., Wietecha-Posłuszny R., Płotka-Wasylka J., Tobiszewski M. How to evaluate methods used in chemical laboratories in terms of the total chemical risk? – a ChlorTox Scale // Green Anal. Chem. 2023. V. 5. Article. 100056. https://doi.org/10.1016/j.greeac.2023.100056
  26. https://pubchem.ncbi.nlm.nih.gov (PubChem, National Library of Medicine) (26.12.2023).
  27. Rappe Ch. Sources and environmental concentrations of dioxins and related compounds // Pure Appl. Chem. 1996. V. 68. №. 9. P. 1781. https://doi.org/10.1351/pac199668091781
  28. Samburova V., Zielinska B., Khlystov A. Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? // Toxics. 2017. V. 5. Article. 17. https://doi.org/10.3390/toxics5030017

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Graphical representation of the National Index of Environmental Monitoring Methods.

Download (218KB)
3. Fig. 2. Graphical representation of the Environmental Assessment Profile.

Download (78KB)
4. Fig. 3. Block diagram of the evaluation of the analytical methodology according to the Analytical Eco-scale.

Download (265KB)
5. Fig. 4. Graphical representation of the Environmental Friendliness Index of analytical methods.

Download (241KB)
6. Fig. 5. Presentation of the result according to the Hexagon algorithm.

Download (96KB)
7. Fig. 6. Additive RGB color model.

Download (158KB)
8. Fig. 7. Graphical representation of the Green Index of analytical methods.

Download (227KB)
9. Fig. 8. Graphical representation of the Comprehensive Index of Environmental Friendliness of Analytical Methods.

Download (208KB)
10. Fig. 9. Representation of the result according to the RGB 12 color coding algorithm.

Download (196KB)

Note

In commemoration of the 300th anniversary of the St. Petersburg University


Copyright (c) 2024 Russian Academy of Sciences