Joint determination of nine uremic toxins and choline in blood serum using high-performance liquid chromatography with tandem mass spectrometric detection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents a method for the simultaneous determination of nine uremic toxins and choline in blood serum. The target substances were selected based on literature data as potential biomarkers for assessing the severity and progression of immunoglobulin A nephropathy, a kidney disease that leads to disability, and, without timely treatment, death in young and middle-aged individuals. Ultrafiltration is used to separately determine free and protein-bound indolic uremic toxins in the blood. The use of high-performance liquid chromatography combined with high-resolution tandem mass spectrometry ensures satisfactory accuracy of the analysis without complete chromatographic separation of analytes under standard reversed-phase HPLC conditions. For calibration purposes, an albumin solution in phosphate buffer was used as a surrogate for blood serum. The protein concentration of 45 mg/mL and pH 7.4 match the characteristics of native blood serum. A pilot experiment demonstrated the feasibility of determining key indicators of the gut microbiome’s state—choline and trimethylamine N-oxide (TMAO)—in dried blood spots.

Full Text

Restricted Access

About the authors

T. I. Alyushina

Research Institute of Hygiene, Occupational Pathology, and Human Ecology of the Federal Medical-Biological Agency of Russia

Email: saveleva@rihophe.site
Russian Federation, Kuzmolovsky Settlement, Leningrad Region

E. I. Savelyeva

Research Institute of Hygiene, Occupational Pathology, and Human Ecology of the Federal Medical-Biological Agency of Russia

Author for correspondence.
Email: saveleva@rihophe.site
Russian Federation, Kuzmolovsky Settlement, Leningrad Region

V. A. Dobronravov

Research Institute of Nephrology, I.P. Pavlov First St. Petersburg State Medical University

Email: saveleva@rihophe.site
Russian Federation, St. Petersburg

References

  1. Nair R., Walker P.D. Is IgA nephropathy the commonest primary glomerulopathy among young adults in the USA // Kidney Int. 2006. V. 69. Р. 1455.
  2. Шилов Е.М., Бобкова И.Н., Колина И.Б., Камышова Е.С. Клинические рекомендации по диагностике и лечению IgA-нефропатии // Нефрология. 2015. Т. 19. № 6. С. 83.
  3. Boyd J.K., Barratt J. Immune complex formation in IgA nephropathy: CD89 a ‘saint’ or a ‘sinner’? // Kidney Int. 2010. V. 78. P. 1211.
  4. Falconi C.A., Junho C.V. C., Fogaça-Ruiz F., Vernier I.C.S., da Cunha R.S., Stinghen A.E.M., et al. Uremic toxins: An alarming danger concerning the cardiovascular system // Front. Physiol. 2021. V. 12. Article 686249.
  5. Go A.S., Chertow G.M., Fan D. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization // N. Engl. J. Med. 2004. V. 351. № 13. P. 1296.
  6. Noce A., Marchetti M., Marrone G. Link between gut microbiota dysbiosis and chronic kidney disease // Eur. Rev. Med. Pharmacol. 2022. V. 26. № 6. P. 2057.
  7. Huang Y., Xin W., Xiong J. The intestinal microbiota and metabolites in the gut-kidney-heart axis of chronic kidney disease // Front Pharmacol. 2022. V. 13. Article 837500.
  8. Bennett B., Vallim T., Wang Z. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation // Cell Metab. 2013. V. 17. № 1. P. 49.
  9. Boini K.M., Hussain T., Li P.-L. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction // Cell Physiol. Biochem. 2017. V. 44. № 1. P. 152.
  10. Ma G., Pan B., Chen Y., Guo C., Zhao M.M., Zheng L.M., Chen B.X. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion // Biosci. Rep. 2017. V. 37. № 2. BSR20160244.
  11. Zheng Y., Tang Z., You L., Wu Y, Liu J, Xue J. Trimethylamine-N-oxide is an independent risk factor for hospitalization events in patients receiving maintenance hemodialysis // Ren Fail. 2020. V. 42. № 1. P. 580.
  12. Yoo W., Zieba J.K., Foegeding N.J., Torres T.P., Shelton C.D., Shealy N.G. High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide // Science. 2021. V. 373. P. 813.
  13. Yoo W., Zieba J.K., Foegeding N.J., Torres T.P., Shelton C.D., Shealy N.G., et al. High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide // Science. 2021. V. 373. P. 813.
  14. Xu Y., Kong X., Zhu Y., Xu J., Mao H., Li J., et al. Contribution of gut microbiota toward renal function in sepsis // Front. Microbiol. 2022. V. 13. Article 985283.
  15. Гецина М.Л., Черневская Е.А., Белобородова Н.В. Роль общих для человека и микробиоты метаболитов триптофана при тяжелых заболеваниях и критических состояниях // Клиническая практика. 2020. Т. 11. № 1. С. 92. (Getsina M.L., Chernevskaya E.A., Beloborodova N.V. The role of human and microbial metabolites of triptophane in severe diseases and critical Ill (review) // J. Clin. Pract. 2020. V. 11. № 1. P. 92.)
  16. Tanaka H., Sirich T.L., Plummer N.S., Weaver D.S., Meyer T.W. An enlarged profile of uremic solutes // PLoS One. 2015. V. 10. № 8. Article 0135657. https://doi.org/10.1371/journal.pone.0135657
  17. Mair R.D., Sirich T.L., Plummer N.S., Meyer T.W. Characteristics of colon-derived uremic solutes // Clin. J. of the American Soc Nephrol. 2018. V. 13. № 9. P. 1398–404. https://doi.org/10.2215/CJ N.03150318.
  18. Liu G., Gibson R.A., Callahan D., Guo X.-F., Li D., Sinclair A.J. Pure omega 3 polyunsaturated fatty acids (EPA, DPA or DHA) are associated with increased plasma levels of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) in a short-term study in women // Food Funct. 2020. V. 11. № 3. P. 2058. https://doi.org/10.1039/c9fo02440a
  19. Kikuchi K., Itoh Y., Tateoka R., Ezawa A., Murakami K., Niwa T. Metabolomic search for uremic toxins as indicators of the effect of an oral sorbent AST-120 by liquid chromatography/tandem mass spectrometry // J. Chromatogr. B. 2010. V. 878. № 29. P. 2997. https://doi.org/10.1016/j.jchromb.2010.09.006
  20. Liabeuf S., Barreto D.V., Barreto F.C., Meert N., Glorieux G., Schepers E., et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease // Nephrol. Dial. Transplant. 2010. V. 25. P. 1183. https://doi.org/10.1093/ndt/gfp592
  21. Machado T.S., Poitevin S., Paul P., McKay N., Jourde-Chiche N., Legris T., et al. Indoxyl sulfate upregulates liver P-glycoprotein expression and activity through aryl hydrocarbon receptor signaling // Clin. J. Am. Soc Nephrol. 2018. V. 29. P. 906. https://doi. org/10.1681/AS N.2017030361
  22. Ohkawa R., Kurano M., Sakai N., Kishimoto T., Nojiri T., Igarashi K. et al. Measurement of plasma choline in acute coronary syndrome: Importance of suitable sampling conditions for this assay // Sci. Rep. 2018. V. 8. № 1. P. 4725.
  23. Fabresse N., Uteem I., Lamy E., Massy Z., Larabi I.A., Alvarez J.-C. Quantification of free and protein bound uremic toxins in human serum by LC-MS/MS: Comparison of rapid equilibrium dialysis and ultrafiltration // Clin. Chim. Acta. 2020. V. 507. P. 228. https://doi.org/10.1016/j.cca.2020.04.032
  24. Электронный ресурс Uremic Solutes Database / database.uremic-toxins.org (дата обращения 11.12.2023).
  25. Garcia E., Shalaurova I., Matyus S.P., Wolak-Dinsmore J., Oskardmay D.N., Connelly M.A.. Quantification of choline in serum and plasma using a clinical nuclear magnetic resonance analyzer // Clin Chim Acta. 2022. V. 1. № 524. P. 106. https://doi.org/10.1016/j.cca.2021.11.031
  26. Ilcol Y.O., Dilek K., Yurtkuran M., Ulus I. Changes of plasma free choline and choline-containing compounds’ concentrations and choline loss during hemodialysis in ESRD patients // Clin. Biochem. 2002. V. 35. № 3. P. 233. https://doi.org/10.1016/s0009-9120(02)00298-9
  27. Silva L.A.P., Campagnolo S., Fernandes S.R., Marques S.S., Barreiros L., Sampaio-Maia B. Segundo M.A. Rapid and sustainable HPLC method for the determination of uremic toxins in human plasma samples // Anal. Bioanal. Chem. 2023. V. 415. P. 683.
  28. Calaf R., Cerini C., Genovesio C., Verhaeghe P., Jourde-Chiche N., Berge-Lefranc D. Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay // J. Chromatogr. B. 2011. V. 879. № 23. P. 2281. https:// doi. org/10. 1016/j. jchro mb. 2011. 06. 014
  29. Zhan X., Fletcher L., Huyben D., Cai H., Dingle S., Qi N., et al. Choline supplementation regulates gut microbiome diversity, gut epithelial activity, and the cytokine gene expression in gilts // Front. Nutr. 2023. V. 10. Article 1101519. https://doi.org/10.3389/fnut.2023.1101519
  30. Awwad H.M., Kirsch S.H., Geise J., Obeid R. Measurement of concentrations of whole blood levels of choline, betaine, and dimethylglycine and their relations to plasma levels // J. Chromatogr. B. 2014. V. 957. P. 41.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Схема определения свободных и связанных с белками уремических токсинов в сыворотке крови.

Download (90KB)
3. Рис. 2. Схема определения холина и триметиламин-N-оксида (ТМАО) в сухих пятнах крови.

Download (64KB)
4. Рис. 3. Результаты сравнения картриджей Whatman 903 и Биохран на примере определения холина и триметил амин-N-оксида (ТМАО) в технике сухих пятен крови.

Download (88KB)

Copyright (c) 2024 Russian Academy of Sciences