Effect of nanoparticle stabilization of suspension of micro-sized particles of doped cerium dioxide for electrophoresis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of research on zeta potential, pH and electrophoretic precipitation characteristics (EPO) of Ce0.8Sm0.2O1.9 (SDC-m) microsize powder suspensions upon addition of different fraction of SDC-n nanoparticles are presented. The effect of stabilization of the suspension of microsized particles due to the introduction of highly charged nanoparticles is shown. The non-monotonic character of the coating thickness change at EFO from SDC-m/SDC-n suspension with the increase of SDC-n nanoparticles content with the tendency of zeta-potential and resistance of the suspension to increase has been established. It is shown that the greatest thickness of a continuous and homogeneous SDC coating is achieved at a fraction of SDC-n nanoparticles of 5 wt. %.

About the authors

E. G. Kalinina

Institute of Electrophysics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: jelen456@yandex.ru
Ekaterinburg, Russia; Ekaterinburg, Russia

References

  1. Besra L., Liu M. // Prog. Mater. Sci. 2007. V. 52. № 1. P. 1. https://doi.org/10.1016/j.pmatsci.2006.07.001.
  2. Aznam I., Mah J.C.W., Muchtar A. et al. // J. Zhejiang Univ. Sci. A 2018. V. 19. № 11. P. 811. https://doi.org/10.1631/jzus.A1700604.
  3. Kalinina E.G., Pikalova E. Yu. // Russ. Chem. Rev. 2019. V. 88. № 12. P. 1179. https://doi.org/10.1070/RCR4889 [Калинина Е.Г., Пикалова Е.Ю. // Успехи химии. 2019. Т. 88. № 12. С. 1179. https://doi.org/10.1070/RCR4889]/
  4. Lu Z., Zhou X., Fisher D. et al. // Electrochem. Commun. 2010. V. 12. № 2. P. 179. https://doi.org/10.1016/j.elecom.2009.11.015.
  5. Pikalova E. Yu., Kalinina E.G. // Int. J. Energy Prod. Manag. 2019. V. 4. № 1. P. 1. https://doi.org/10.2495/EQ-V4-N1-1-27.
  6. Solovyev A.A., Rabotkin S.V., Shipilova A.V., Ionov I.V. // Int. J. Electrochem. Sci. 2019. V. 14. № 1. P. 575. https://doi.org/10.20964/2019.01.03.
  7. Hu S., Li W., Finklea H., Liu X. // Adv. Colloid Interface Sci. 2020. V. 276. P. 102102. https://doi.org/10.1016/j.cis.2020.102102.
  8. Pikalova E. Yu., Kalinina E.G. // Russ. Chem. Rev. 2021. V. 90. P. 703. https://doi.org/10.1070/rcr4966. [Пикалова Е.Ю., Калинина Е.Г. // Успехи химии. 2021. Т. 90. С. 703. https://doi.org/10.1070/rcr4966].
  9. Erpalov M.V., Tarutin A.P., Danilov N.A. et al. // Russ. Chem. Rev. 2023 V. 92. № 10. P. RCR5097. https://doi.org/10.59761/RCR5097. [Ерпалов М.В., Тарутин А.П., Данилов Н.А. и др. // Успехи химии. 2023. Т. 92. № 10. С. RCR5097. https://doi.org/10.59761/RCR509.7].
  10. Zhuravlev V.D., Bamburov V.G., Ermakova L.V., Lobachevskaya N.I. // Phys. At. Nucl. 2015. V. 78. № 12. P. 1389. https://doi.org/10.1134/s1063778815120169.
  11. Wain-Martin A., Morán-Ruiz A., Vidal K. et al. // Solid State Ion. 2017. V. 313. P. 52. https://doi.org/10.1016/j.ssi.2017.08.021.
  12. Kalinina E.G., Pikalova E. Yu. // Russ. J. Phys. Chem. A 2021. V. 95. № 9. P. 1942. https://doi.org/10.1134/S0036024421090077. [Калинина Е.Г., Пикалова Е.Ю. // Журн. физ. химии. 2021. Т. 95. № 9. С. 1426. https://doi.org/10.31857/S0044453721090077].
  13. Lyklema, J. // Colloids Surf. 2011. V. 376. № 1–3. P. 2. https://doi.org/10.1016/j.colsurfa.2010.09.021.
  14. Will J., Hruschka M.K.M., Gubler L., Gauckler, L.J. // J. Am. Ceram. Soc. 2004. V. 84. № 2. P. 328. https://doi.org/10.1111/j.1151-2916.2001.tb00658.x.
  15. Zhitomirsky I., Petric A. // J. Eur. Ceram. Soc. 2000. V. 20. № 12. P. 2055. https://doi.org/10.1016/S0955-2219(00)00098-4.
  16. Ichiboshi H., Myoujin K., Kodera T., Ogihara T. // Key Eng. Mater. 2013. V. 566. P. 137. https://doi.org/10.4028/www.scientific.net/KEM.566.137.
  17. Panigrahi S., Bhattacharjee S., Besra L. et al. // J. Eur. Ceram. Soc. 2010. V. 30. № 5. P. 1097. https://doi.org/10.1016/j.jeurceramsoc.2009.06.038.
  18. Osipov V.V., Kotov Yu.A., Ivanov M.G. et al. // Laser Phys. V. 16. № 1. P. 116. https://doi.org/10.1134/S1054660X06010105.
  19. Kalinina E.G., Samatov O.M., Safronov A.P. // Inorg. Mater. 2016. V. 52. № 8. P. 858. https://doi.org/10.1134/S0020168516080094. [Калинина Е.Г., Саматов О.М., Сафронов А.П. // Неорган. материалы. 2016. Т. 52. № 8. С. 922. https://doi.org/10.7868/S0002337X16080091.]
  20. Pikalova E., Osinkin D., Kalinina E. // Membranes. 2022. V. 12. P. 682. https://doi.org/10.3390/membranes12070682.
  21. Tohver V., Smay J.E., Braem A. et al. // PNAS. 2001. V. 98. № 16. P. 8950. https://doi.org/10.1073/pnas.151063098.
  22. Zhang F., Long G.G., Jemian P.R. et al. // Langmuir. 2001. V. 24. № 13. P. 6504. https://doi.org/10.1021/la702968n.
  23. Trulsson M., Jönsson B., Labbez C. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 541. https://doi.org/10.1039/C2CP42404E.
  24. Hamaker H.C. // J. Chem. Soc. Faraday Trans. 1940. V. 35. P. 279. https://doi.org/10.1039/tf9403500279.
  25. Safronov A.P., Kalinina E.G., Smirnova T.A. et al. // Russ. J. Phys. Chem. A. 2010. V. 84. № 12. P. 2122. https://doi.org/10.1134/S0036024410120204. [Сафронов А.П., Калинина Е.Г., Смирнова Т.А. и др. // Журн. физ. химии. 2010. Т. 84. № 12. С. 2319.]
  26. Koelmans H., Overbeek J. Th.G. // Faraday Discuss. 1954. V. 18. P. 52. https://doi.org/10.1039/df9541800052.
  27. Mizuguchi J., Sumi K., Muchi T. // J. Electrochem. Soc. 1983. V. 130. № 9. P. 1819. https://doi.org/10.1149/1.2120105.
  28. De D., Nicholson P.S. // J. Am. Ceram. Soc. 2004. V. 82. № 11. P. 3031. https://doi.org/10.1111/j.1151-2916.1999.tb02198.x.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences