Thermal decomposition of [M(NH3)6][Fe(CN)6] (M = Ir, Rh) in different atmospheres. Crystal structure of [Rh(NH3)6][Fe(CN)6]

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The double complex salt [Rh(NH3)6][Fe(CN)6] is structurally characterized. The thermal behavior of the salt [Rh(NH3)6][Fe(CN)6] in reducing (He/H2), inert (He) and oxidizing (Ar/O2) atmospheres is studied in detail. The intermediate product of the decomposition of double complex salts [M(NH3)6][Fe(CN)6] (M = Ir, Rh) is an X-ray amorphous polymer compound with the gross composition FeM(CN)5. The final product of the decomposition of [Rh(NH3)6][Fe(CN)6] in reducing and inert atmospheres is an ordered FeRh alloy. In an oxidizing atmosphere, a solid solution of Fe2O3 and Rh2O3 oxides is predominantly formed. The obtained data allow us to consider double complex salts as precursors for obtaining iron-iridium and iron-rhodium alloys or oxide systems based on them.

Full Text

Restricted Access

About the authors

A. A. Popov

Nikolaev Institute of Inorganic Chemistry SB RAS

Author for correspondence.
Email: apopov@niic.nsc.ru
Russian Federation, 3 Lavrentyev Ave., Novosibirsk, 630090

P. E. Plyusnin

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: apopov@niic.nsc.ru
Russian Federation, 3 Lavrentyev Ave., Novosibirsk, 630090

P. Yu. Tyapkin

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: apopov@niic.nsc.ru
Russian Federation, Novosibirsk, 630128

T. S. Sukhikh

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: apopov@niic.nsc.ru
Russian Federation, 3 Lavrentyev Ave., Novosibirsk, 630090

L. S. Kibis

Boreskov Institute of Catalysis SB RAS

Email: apopov@niic.nsc.ru
Russian Federation, 5 Lavrentyev Ave., Novosibirsk, 630090

S. V. Korenev

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: apopov@niic.nsc.ru
Russian Federation, 3 Lavrentyev Ave., Novosibirsk, 630090

References

  1. Hughes A.E., Haque N., Northey S.A. et al. // Resources. 2021. V. 10. № 9. P. 93. https://doi.org/10.3390/resources10090093
  2. Avisar S., Shvets A., Shner Y. et al. // J. Alloys Compd. 2023. V. 936. P. 168326. https://doi.org/10.1016/j.jallcom.2022.168326
  3. Niu H., Wang Q., Huang C. et al. // Appl. Sci. 2023. V. 13. № 4. P. 2177. https://doi.org/10.3390/app13042177
  4. Mladenović D., Daş E., Santos D.M.F. et al. // Materials (Basel). 2023. V. 16. № 9. P. 3388. https://doi.org/10.3390/ma16093388
  5. Гимаев Р.Р., Ваулин А.А., Губкин А.Ф. и др. // Физика металлов и металловедение. 2020. Т. 121. № 9. С. 907. https://doi.org/10.31857/S0015323020090041
  6. Gibbons J., Dohi T., Amin V.P. et al. // Phys. Rev. Appl. 2022. V. 18. № 2. P. 024075. https://doi.org/10.1103/PhysRevApplied.18.024075
  7. Chen M.T., Duan J.J., Feng J.J. et al. // J. Colloid Interface Sci. 2022. V. 605. P. 888. https://doi.org/10.1016/j.jcis.2021.07.101
  8. Xu Q., Wang P., Zakia M. et al. // Appl. Phys. A. 2023. V. 129. P. 514. https://doi.org/10.1007/s00339-023-06775-y
  9. Zhang Z., Xia Y., Ye M. et al. // Int. J. Hydrogen Energy. 2022. V. 47. № 27. P. 13371. https://doi.org/10.1016/j.ijhydene.2022.02.078
  10. Yu Z., Si C., Lagrow A.P. et al. // ACS Catal. 2022. V. 12. № 15. P. 9397. https://doi.org/10.1021/acscatal.2c01861
  11. Choong C.K., Du Y., Poh C.K. et al. // Appl. Catal., B. 2024. V. 345. P. 123630. https://doi.org/10.1016/j.apcatb.2023.123630
  12. Бородин А.О., Филатов Е.Ю., Куратьева Н.В. и др. // Журн. структур. химии. 2023. Т. 64. № 11. C. 118092. https://doi.org/10.26902/JSC_id118092
  13. Vorobyeva S.N., Rudzis Z.V., Sukhikh T.S. et al. // New J. Chem. 2024. V. 48. № 36. P. 15894. https://doi.org/10.1039/D4NJ03084B
  14. Garkul I.A., Zadesenets A.V., Filatov E.Y. et al. // Int. J. Hydrogen Energy. 2024. V. 82. P. 611. https://doi.org/10.1016/j.ijhydene.2024.07.446
  15. Zadesenets A.V., Garkul I.A., Filatov E.Y. et al. // Int. J. Hydrogen Energy. 2023. V. 48. № 59. P. 22428. https://doi.org/10.1016/j.ijhydene.2023.01.365
  16. Lagunova V., Rubilkin P., Filatov E. et al. // New J. Chem. 2024. V. 48. № 4. P. 1578. https://doi.org/10.1039/D3NJ05311C
  17. Руднева Ю.В., Коренев С.В. // Журн. неорган. химии. 2024. Т. 69. № 8. С. 1181. https://doi.org/10.31857/S0044457X24080112
  18. Гаркуль И.А. Двойные комплексные оксалаты Pd и Rh c 3d-металлами как предшественники биметаллических систем: дис. канд. хим. наук, Новосибирск, 2023. 135 с.
  19. Kohata S., Asakawa M., Maeda T. et al. // Anal. Sci. 1986. V. 2. № 4. P. 325. https://doi.org/10.2116/analsci.2.325
  20. Варыгин А.Д., Попов А.А., Громилов С.А. и др. // Журн. структур. химии. 2023. Т. 64. № 7. С. 113132. https://doi.org/10.26902/JSC_id113132
  21. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений / Пер. с англ. под ред. Пентина Ю.А. М.: Мир, 1991.
  22. Bruker APEX3 software suite: APEX3 v.2019.1-0, SADABS v.2016/2, SAINT v.8.40a. Madison, WI, USA: Bruker Nano, 2005–2018.
  23. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  24. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  26. NETZSCH Proteus Thermal Analysis, v. 6.1.0. Selb. Bayern, Germany: NETZSCH-Gerätebau GmbH, 2013.
  27. Powder Diffraction File, PDF-2/Release 2009, International Centre for Diffraction Data, USA (2009).
  28. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. № 3. P. 301. https://doi.org/10.1107/S0021889895014920
  29. Lommel J.M., Kouvel J.S. // J. Appl. Phys. 1967. V. 38. № 3. P. 1263. https://doi.org/10.1063/1.1709570
  30. Ohtani Y., Hatakeyama I. // J. Appl. Phys. 1993. V. 74. № 5. P. 3328. https://doi.org/10.1063/1.354557
  31. Miyajima H., Yuasa S. // J. Magn. Magn. Mater. 1992. V. 104–107. № 3. P. 2025. https://doi.org/10.1016/0304-8853(92)91652-A
  32. Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. 2012. V. 1489. № 2012. P. 178. https://doi.org/10.1063/1.4759488
  33. Gorol M., Mösch-Zanetti N.C., Noltemeyer M. et al. // Z. Anorg. Allg. Chem. 2000. V. 626. № 11. P. 2318. https://doi.org/10.1002/1521-3749(200011)626:11<2318::AID-ZAAC2318>3.0.CO;2-W
  34. Печенюк С.И., Домонов Д.П., Шимкин А.А. и др. // Изв. АН. Сер. хим. 2015. № 2. С. 322.
  35. Домонов Д.П., Куратьева Н.В., Печенюк С.И. // Журн. структур. химии. 2011. Т. 52. № 2. С. 365.
  36. Moulder J.F., Stickle W.F., Sobol P.E. et al. // Handbook of X-ray Photoelectron Spectroscopy, Minnesota, USA: Perkin-Elmer Corp., Eden Prairie, 1992.
  37. Mansour A.N., Ko J.K., Waller G.H. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. P. 103002. https://doi.org/10.1149/2162-8777/ac2591
  38. Le Vot S., Roué L., Bélanger D. // Electrochim. Acta. 2012. V. 59. P. 49. https://doi.org/10.1016/j.electacta.2011.10.019
  39. Peuckert M. // Surf. Sci. Lett. 1984. V. 144. № 2–3. P. A342. https://doi.org/10.1016/0167-2584(84)90295-0
  40. Grosvenor A.P., Kobe B.A., Biesinger M.C. et al. // Surf. Interface Anal. 2004. V. 36. № 12. P. 1564. https://doi.org/10.1002/sia.1984
  41. McIntyre N.S., Zetaruk D.G. // Anal. Chem. 1977. V. 49. № 11. P. 1521. https://doi.org/10.1021/ac50019a016
  42. Mills P., Sullivan J.L. // J. Phys. D. Appl. Phys. 1983. V. 16. № 5. P. 723. https://doi.org/10.1088/0022-3727/16/5/005
  43. Muhler M., Schlogl R., Ertl G. // J. Catal. 1992. V. 138. № 2. P. 413. https://doi.org/10.1016/0021-9517(92)90295-S
  44. Ganguli S., Das S., Bhattacharya M. // J. Radioanal. Nucl. Chem. 1998. V. 232. № 1–2. P. 229. https://doi.org/10.1007/BF02383744
  45. Reguera E., Bertran J.F., Miranda J. et al. // Hyperfine Interact. 1993. V. 77. № 1. P. 1. https://doi.org/10.1007/BF02320293
  46. Balmaseda J., Reguera E., Gomez A. et al. // J. Phys. Chem. B. 2003. V. 107. № 41. P. 11360. https://doi.org/10.1021/jp027678g
  47. Reguera E., Fernández-Bertrán J., Dago A. et al. // Hyperfine Interact. 1992. V. 73. № 3–4. P. 295. https://doi.org/10.1007/BF02418604
  48. Jackson W.G., Rahman A.F.M.M. // Inorg. Chem. 1990. V. 29. № 17. P. 3247. https://doi.org/10.1021/ic00342a041

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the cation and anion in the DCS [Rh(NH3)6][Fe(CN)6] with a hydrogen bond (dotted line).

Download (53KB)
3. Fig. 2. Thermal analysis curves and mass spectrometric curves of the release of gaseous decomposition products of DKS [Rh(NH3)6][Fe(CN)6] in a reducing (He/H2) atmosphere.

Download (196KB)
4. Fig. 3. Diffraction patterns of the decomposition products of DKS [Rh(NH3)6][Fe(CN)6] at 1200°C in a reducing (1) and inert (2) atmosphere.

Download (69KB)
5. Fig. 4. Thermal analysis curves and mass spectrometric curves of the release of gaseous decomposition products of DKS [Rh(NH3)6][Fe(CN)6] in an inert (He) atmosphere.

Download (173KB)
6. Fig. 5. Thermal analysis curves and mass spectrometric curves of the release of gaseous decomposition products of DKS [Rh(NH3)6][Fe(CN)6] in an oxidizing (Ar/O2) atmosphere.

Download (187KB)
7. Fig. 6. Diffraction pattern of the decomposition product of DKS [Rh(NH3)6][Fe(CN)6] at 500°C in an oxidizing atmosphere (Ar/O2) (1); diffraction patterns of Fe2O3 (ICDD PDF-2 #33-0664) (2); Rh2O3 (ICDD PDF-2 #41-0541) (3); Rh (ICDD PDF-2 #05-0685) (4).

Download (64KB)
8. Fig. 7. IR spectra of intermediate products of decomposition of DKS [Rh(NH3)6][Fe(CN)6] in a reducing atmosphere at 350°C (1) and in an oxidizing atmosphere at 290°C (2).

Download (68KB)
9. Fig. 8. XPS spectra of N1s, Ir4f, Fe2p and O1s recorded for the DCS [Ir(NH3)6][Fe(CN)6] and its decomposition products in a reducing (He/H2) atmosphere at different temperatures: 1 – initial DCS, 2 – 420°C, 3 – 650°C.

Download (204KB)
10. Fig. 9. Mössbauer spectra of the DCS [Ir(NH3)6][Fe(CN)6] (a) and [Rh(NH3)6][Fe(CN)6] (b) and intermediate products FeIr(CN)5 (c) and FeRh(CN)5 (d).

Download (287KB)
11. Supplementary materials
Download (200KB)
12. Fig. S1. Calibration dependence of the specific atomic volume of Fe-Rh alloys on the Rh content, constructed on the basis of literature data. 1 – body-centered cubic Fe1–xRhx alloy; 2 – ordered FeRh alloy (space group Pm–3m); 3 – face-centered cubic Rh1–yFey alloy; 4 – calibration dependence. Data are taken from [28–30].

Download (40KB)

Copyright (c) 2025 Russian Academy of Sciences