Thermal decomposition of [M(NH3)6][Fe(CN)6] (M = Ir, Rh) in different atmospheres. Crystal structure of [Rh(NH3)6][Fe(CN)6]
- Authors: Popov A.A.1, Plyusnin P.E.1, Tyapkin P.Y.2, Sukhikh T.S.1, Kibis L.S.3, Korenev S.V.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry SB RAS
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Boreskov Institute of Catalysis SB RAS
- Issue: Vol 70, No 5 (2025)
- Pages: 697-707
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://rjmseer.com/0044-457X/article/view/685488
- DOI: https://doi.org/10.31857/S0044457X25050094
- EDN: https://elibrary.ru/HYLOBT
- ID: 685488
Cite item
Abstract
The double complex salt [Rh(NH3)6][Fe(CN)6] is structurally characterized. The thermal behavior of the salt [Rh(NH3)6][Fe(CN)6] in reducing (He/H2), inert (He) and oxidizing (Ar/O2) atmospheres is studied in detail. The intermediate product of the decomposition of double complex salts [M(NH3)6][Fe(CN)6] (M = Ir, Rh) is an X-ray amorphous polymer compound with the gross composition FeM(CN)5. The final product of the decomposition of [Rh(NH3)6][Fe(CN)6] in reducing and inert atmospheres is an ordered FeRh alloy. In an oxidizing atmosphere, a solid solution of Fe2O3 and Rh2O3 oxides is predominantly formed. The obtained data allow us to consider double complex salts as precursors for obtaining iron-iridium and iron-rhodium alloys or oxide systems based on them.
Keywords
Full Text

About the authors
A. A. Popov
Nikolaev Institute of Inorganic Chemistry SB RAS
Author for correspondence.
Email: apopov@niic.nsc.ru
Russian Federation, 3 Lavrentyev Ave., Novosibirsk, 630090
P. E. Plyusnin
Nikolaev Institute of Inorganic Chemistry SB RAS
Email: apopov@niic.nsc.ru
Russian Federation, 3 Lavrentyev Ave., Novosibirsk, 630090
P. Yu. Tyapkin
Institute of Solid State Chemistry and Mechanochemistry SB RAS
Email: apopov@niic.nsc.ru
Russian Federation, Novosibirsk, 630128
T. S. Sukhikh
Nikolaev Institute of Inorganic Chemistry SB RAS
Email: apopov@niic.nsc.ru
Russian Federation, 3 Lavrentyev Ave., Novosibirsk, 630090
L. S. Kibis
Boreskov Institute of Catalysis SB RAS
Email: apopov@niic.nsc.ru
Russian Federation, 5 Lavrentyev Ave., Novosibirsk, 630090
S. V. Korenev
Nikolaev Institute of Inorganic Chemistry SB RAS
Email: apopov@niic.nsc.ru
Russian Federation, 3 Lavrentyev Ave., Novosibirsk, 630090
References
- Hughes A.E., Haque N., Northey S.A. et al. // Resources. 2021. V. 10. № 9. P. 93. https://doi.org/10.3390/resources10090093
- Avisar S., Shvets A., Shner Y. et al. // J. Alloys Compd. 2023. V. 936. P. 168326. https://doi.org/10.1016/j.jallcom.2022.168326
- Niu H., Wang Q., Huang C. et al. // Appl. Sci. 2023. V. 13. № 4. P. 2177. https://doi.org/10.3390/app13042177
- Mladenović D., Daş E., Santos D.M.F. et al. // Materials (Basel). 2023. V. 16. № 9. P. 3388. https://doi.org/10.3390/ma16093388
- Гимаев Р.Р., Ваулин А.А., Губкин А.Ф. и др. // Физика металлов и металловедение. 2020. Т. 121. № 9. С. 907. https://doi.org/10.31857/S0015323020090041
- Gibbons J., Dohi T., Amin V.P. et al. // Phys. Rev. Appl. 2022. V. 18. № 2. P. 024075. https://doi.org/10.1103/PhysRevApplied.18.024075
- Chen M.T., Duan J.J., Feng J.J. et al. // J. Colloid Interface Sci. 2022. V. 605. P. 888. https://doi.org/10.1016/j.jcis.2021.07.101
- Xu Q., Wang P., Zakia M. et al. // Appl. Phys. A. 2023. V. 129. P. 514. https://doi.org/10.1007/s00339-023-06775-y
- Zhang Z., Xia Y., Ye M. et al. // Int. J. Hydrogen Energy. 2022. V. 47. № 27. P. 13371. https://doi.org/10.1016/j.ijhydene.2022.02.078
- Yu Z., Si C., Lagrow A.P. et al. // ACS Catal. 2022. V. 12. № 15. P. 9397. https://doi.org/10.1021/acscatal.2c01861
- Choong C.K., Du Y., Poh C.K. et al. // Appl. Catal., B. 2024. V. 345. P. 123630. https://doi.org/10.1016/j.apcatb.2023.123630
- Бородин А.О., Филатов Е.Ю., Куратьева Н.В. и др. // Журн. структур. химии. 2023. Т. 64. № 11. C. 118092. https://doi.org/10.26902/JSC_id118092
- Vorobyeva S.N., Rudzis Z.V., Sukhikh T.S. et al. // New J. Chem. 2024. V. 48. № 36. P. 15894. https://doi.org/10.1039/D4NJ03084B
- Garkul I.A., Zadesenets A.V., Filatov E.Y. et al. // Int. J. Hydrogen Energy. 2024. V. 82. P. 611. https://doi.org/10.1016/j.ijhydene.2024.07.446
- Zadesenets A.V., Garkul I.A., Filatov E.Y. et al. // Int. J. Hydrogen Energy. 2023. V. 48. № 59. P. 22428. https://doi.org/10.1016/j.ijhydene.2023.01.365
- Lagunova V., Rubilkin P., Filatov E. et al. // New J. Chem. 2024. V. 48. № 4. P. 1578. https://doi.org/10.1039/D3NJ05311C
- Руднева Ю.В., Коренев С.В. // Журн. неорган. химии. 2024. Т. 69. № 8. С. 1181. https://doi.org/10.31857/S0044457X24080112
- Гаркуль И.А. Двойные комплексные оксалаты Pd и Rh c 3d-металлами как предшественники биметаллических систем: дис. канд. хим. наук, Новосибирск, 2023. 135 с.
- Kohata S., Asakawa M., Maeda T. et al. // Anal. Sci. 1986. V. 2. № 4. P. 325. https://doi.org/10.2116/analsci.2.325
- Варыгин А.Д., Попов А.А., Громилов С.А. и др. // Журн. структур. химии. 2023. Т. 64. № 7. С. 113132. https://doi.org/10.26902/JSC_id113132
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений / Пер. с англ. под ред. Пентина Ю.А. М.: Мир, 1991.
- Bruker APEX3 software suite: APEX3 v.2019.1-0, SADABS v.2016/2, SAINT v.8.40a. Madison, WI, USA: Bruker Nano, 2005–2018.
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- NETZSCH Proteus Thermal Analysis, v. 6.1.0. Selb. Bayern, Germany: NETZSCH-Gerätebau GmbH, 2013.
- Powder Diffraction File, PDF-2/Release 2009, International Centre for Diffraction Data, USA (2009).
- Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. № 3. P. 301. https://doi.org/10.1107/S0021889895014920
- Lommel J.M., Kouvel J.S. // J. Appl. Phys. 1967. V. 38. № 3. P. 1263. https://doi.org/10.1063/1.1709570
- Ohtani Y., Hatakeyama I. // J. Appl. Phys. 1993. V. 74. № 5. P. 3328. https://doi.org/10.1063/1.354557
- Miyajima H., Yuasa S. // J. Magn. Magn. Mater. 1992. V. 104–107. № 3. P. 2025. https://doi.org/10.1016/0304-8853(92)91652-A
- Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. 2012. V. 1489. № 2012. P. 178. https://doi.org/10.1063/1.4759488
- Gorol M., Mösch-Zanetti N.C., Noltemeyer M. et al. // Z. Anorg. Allg. Chem. 2000. V. 626. № 11. P. 2318. https://doi.org/10.1002/1521-3749(200011)626:11<2318::AID-ZAAC2318>3.0.CO;2-W
- Печенюк С.И., Домонов Д.П., Шимкин А.А. и др. // Изв. АН. Сер. хим. 2015. № 2. С. 322.
- Домонов Д.П., Куратьева Н.В., Печенюк С.И. // Журн. структур. химии. 2011. Т. 52. № 2. С. 365.
- Moulder J.F., Stickle W.F., Sobol P.E. et al. // Handbook of X-ray Photoelectron Spectroscopy, Minnesota, USA: Perkin-Elmer Corp., Eden Prairie, 1992.
- Mansour A.N., Ko J.K., Waller G.H. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. P. 103002. https://doi.org/10.1149/2162-8777/ac2591
- Le Vot S., Roué L., Bélanger D. // Electrochim. Acta. 2012. V. 59. P. 49. https://doi.org/10.1016/j.electacta.2011.10.019
- Peuckert M. // Surf. Sci. Lett. 1984. V. 144. № 2–3. P. A342. https://doi.org/10.1016/0167-2584(84)90295-0
- Grosvenor A.P., Kobe B.A., Biesinger M.C. et al. // Surf. Interface Anal. 2004. V. 36. № 12. P. 1564. https://doi.org/10.1002/sia.1984
- McIntyre N.S., Zetaruk D.G. // Anal. Chem. 1977. V. 49. № 11. P. 1521. https://doi.org/10.1021/ac50019a016
- Mills P., Sullivan J.L. // J. Phys. D. Appl. Phys. 1983. V. 16. № 5. P. 723. https://doi.org/10.1088/0022-3727/16/5/005
- Muhler M., Schlogl R., Ertl G. // J. Catal. 1992. V. 138. № 2. P. 413. https://doi.org/10.1016/0021-9517(92)90295-S
- Ganguli S., Das S., Bhattacharya M. // J. Radioanal. Nucl. Chem. 1998. V. 232. № 1–2. P. 229. https://doi.org/10.1007/BF02383744
- Reguera E., Bertran J.F., Miranda J. et al. // Hyperfine Interact. 1993. V. 77. № 1. P. 1. https://doi.org/10.1007/BF02320293
- Balmaseda J., Reguera E., Gomez A. et al. // J. Phys. Chem. B. 2003. V. 107. № 41. P. 11360. https://doi.org/10.1021/jp027678g
- Reguera E., Fernández-Bertrán J., Dago A. et al. // Hyperfine Interact. 1992. V. 73. № 3–4. P. 295. https://doi.org/10.1007/BF02418604
- Jackson W.G., Rahman A.F.M.M. // Inorg. Chem. 1990. V. 29. № 17. P. 3247. https://doi.org/10.1021/ic00342a041
Supplementary files
