Synthesis and structure of nanocrystalline copper sulfides with djurleite and covellite structures
- Authors: Sadovnikov S.I.1, Gusev A.I.1
-
Affiliations:
- Institute of Solid State Chemistry, Ural Branch of the RAS
- Issue: Vol 70, No 7 (2025)
- Pages: 897-903
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjmseer.com/0044-457X/article/view/689483
- DOI: https://doi.org/10.31857/S0044457X25070066
- EDN: https://elibrary.ru/JOFIXC
- ID: 689483
Cite item
Abstract
Method of chemical deposition from water solutions of copper nitrate and sodium sulphide, and also from water solutions of copper nitrate with use thiocarbonic acid diamide as sufidizer in the presence of Trilon stabilizer are synthesized nanocrystalline powders of copper sulfides with structures of covellite and djurleite. It is established, that as a result of sulfidization of copper nitrate by sodium sulphide forms powders of copper sulfides with the particle size of 3–6 nanometers having structure of hexagonal covellite and also monoclinic djurleite Cu2-xS with small nonstoichiometry of copper sublattice. Deposition from poorly alkaline water solutions of copper nitrate, thiocarbonic acid diamide and Trilon with heating to temperature ~90–100°C would allow to receive nanocrystalline powders CuS with the particle size of 45–55 nanometers having structure of hexagonal covellite.
Full Text

About the authors
S. I. Sadovnikov
Institute of Solid State Chemistry, Ural Branch of the RAS
Author for correspondence.
Email: sadovnikov@ihim.uran.ru
Russian Federation, Ekaterinburg, 620990
A. I. Gusev
Institute of Solid State Chemistry, Ural Branch of the RAS
Email: sadovnikov@ihim.uran.ru
Russian Federation, Ekaterinburg, 620990
References
- Lukashev P., Lambrecht W.R.L., Kotani T. et al. // Phys. Rev. B. 2007. V. 76. № 19. P. 195202. https://doi.org/10.1103/PhysRevB.76.195202
- Садовников С.И., Сергеева С.В., Гусев А.И. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 792. https://doi.org/10.31857/S0044457X24050192
- Зарудских М.А., Ильина Е.Г., Манкевич А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 2. C. 166. https://doi.org/10.31857/S0044457X24020038
- Shaikh G.Y., Nilegave D.S., Girawale S.S. et al. // ACS Omega. 2022. V. 7. № 34. P. 30233. https://doi.org/10.1021/acsomega.2c03352
- Evans H.T.Jr. // Nature Phys. Sci. 1971. V. 232. P. 69.
- Evans H.T.Jr. // Z. Kristallogr. 1979. V. 150. P. 299.
- Barth T. // Z. Mineral. Geol. A. 1926. P. 284.
- Evans H.T.Jr., Konnert J.A. // Am. Mineral. 1976. V. 61. P. 996.
- Fjellvag H., Gronvold F., Stolen S. et al. // Z. Kristallogr. 1988. V. 184. P. 111.
- Jiang X., Xie Yi., Lu J. et al. // J. Mater. Chem. 2010. V. 10. № 9. P. 2193.
- Djurle S. // Acta Chem. Scand. 1958. V. 12. № 7. P. 1415. https://doi.org/10.3891/acta.chem.scand.12-1415
- Roseboom E.H. // Am. Mineral. 1962. V. 47. P. 1181.
- Joint Committee on Powder Diffraction Standards (JCPDS card № C83 1463).
- Evans H.T. Jr. // Science. 1979. V. 203. № 4378. P. 356.
- Gronvold F., Westrum E.F. Jr. // Am. Mineral. 1980. V. 65. № 5–6. P. 574.
- Morimoto N., Kullerud G. // Am. Mineral. 1963. V. 48. № 1–2. P. 110.
- Mumme W.G., Sparrow G.J., Walker G.S. // Mineralogical Magazine. 1988. V. 52. № 6. P. 323.
- Мурашева К.С., Сайкова С.В., Воробьев С.А. и др. // Журн. структур. химии. 2017. Т. 58. № 7. С. 1421. https://doi.org/10.26902/JSC20170715
- Ульянова У.С., Кожевникова Н.С., Бакланова И.В. и др. // В кн.: Тезисы докл. XXVIII Рос. мол. научн. конф. “Проблемы теор. и эксп. химии”. Екатеринбург, 23–27 апр. 2018. С. 334.
- Behboudnia M., Khanbabaee B. // J. Cryst. Growth. 2007. V. 304. № 1. P. 158. https://doi.org/10.1016/j.jcrysgro.2007.02.016
- Bera P., Seok S.I. // Solid State Sci. 2012. V. 14. № 8. P. 1126. https://doi.org/10.1016/j.solidstatesciences.2012.05.027
- Xie Y., Riedinger A., Prato M. et al. // J. Am. Chem. Soc. 2013. V. 135. № 46. P. 17630. https://doi.org/10.1021/ja409754v
- Ajibade P.A., Botha N.L. // Res. Phys. 2016. V. 6. P. 581. http://dx.doi.org/10.1016/j.rinp.2016.08.001
- Sleman U.M., Naji I.S. S // Iraqi J. Phys. 2018. V. 16. № 38. P. 124. https://doi.org/10.20723/ijp.16.38.124-131
- Kuterbekov K.A., Balapanov M.Kh., Kubenova M.M. et al. // Lett. Mater. 2022. V. 12. № 3. P. 191. https://doi.org/10.22226/2410-3535-2022-3-191-196
- Xie Y., Carbone L., Nobile C. et al. // ACS Nano. 2013. V. 7. P. 7352. https://doi.org/10.1021/nn403035s
- Jaque D., Maestro L.M., del Rosal B. et al. // Nanoscale. 2014. V.6. № 16. P. 9494. https://doi.org/10.1039/C4NR00708E
- Shaw W.H.R., Walker D.G. // J. Am. Chem. Soc. 1956. V. 78. № 22. P. 5769. https://pubs.acs.org/doi/10.1021/ja01603a014
- Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: Изд-во УрО РАН, 2006. С. 41.
- X’Pert HighScore Plus. Version 2.2e (2.2.5). 2009 PANalytical B. V. Almedo, the Netherlands.
- Match. Version 1.10b. Phase Identification from Powder Diffraction 2003–2010 Crystal Impact.
- Takeuchi Y., Kudoh Y., Sato G. // Z. Kristallogr. 1985. V. 173. № 1–2. P. 1198. https://doi.org/10.1524/zkri.1985.173.1-2.119
- Joint Committee on Powder Diffraction Standards (JCPDS card № 75-2233).
- Ohmasa M., Suzuki M., Takeuchi Y. // Mineral. J. 1977. V. 8. № 6. P. 311.
- Gusev A.I., Rempel A.A. Nanocrystalline Materials. Cambridge: Cambridge Intern. Sci. Publishing, 2004. 351 p.
Supplementary files
