The impact of alkyl chain length on the properties of SiO2-based aerogels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Modified silica aerogels were obtained by co-gelation of tetramethoxysilane and acylated 3-aminopropyl-trimethoxysilane (with the general formula (MeO)3–Si–(CH2)3–NHC(O)–R), followed by supercritical drying in CO2. Methyl esters of acetic, valeric, pelargonic, and stearic acids were used as acylating agents. The resulting aerogels were characterized using low-temperature nitrogen adsorption, scanning electron microscopy (SEM), and infrared spectroscopy (IR). It was shown that the specific surface area of the aerogels significantly depends on the length of the alkyl substituent in the modified silane and can vary from 40 to 1375 m²/g. An increase in the length of the alkyl substituent also leads to increased hydrophobicity of the aerogel, up to the formation of superhydrophobic materials (contact angle is 163.7°).

Full Text

Restricted Access

About the authors

I. O. Gozhikova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: lenochka.chg@gmail.com

Institute of Physiologically Active Compounds

Russian Federation, 1 Severnij pr., Chernogolovka, 142432

E. A. Straumal

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: lenochka.chg@gmail.com

Institute of Physiologically Active Compounds

Russian Federation, 1 Severnij pr., Chernogolovka, 142432

S. Yu. Kottsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: lenochka.chg@gmail.com
Russian Federation, Moscow, 119991

E. Yu. Postnova

Institute of Solid State Physics, Russian Academy of Sciences

Email: lenochka.chg@gmail.com
Russian Federation, 2 Academician Ossipyan str., Chernogolovka, 142432

S. A. Lermontov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: lenochka.chg@gmail.com

Institute of Physiologically Active Compounds

Russian Federation, 1 Severnij pr., Chernogolovka, 142432

References

  1. Евстропьев С.К., Солдярова В.Л., Сатаровский А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 3. С. 394. https://doi.org/10.1134/S0036023623603446
  2. Бегимкулова С.В., Насимов А.М., Рузимударов А.М. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 537. https://doi.org/10.1134/S0036023624600485
  3. Wagh P.B., Begag R., Pajonk G.M. et al. // Mater. Chem. Phys. 1999. V. 57. № 3. P. 214. https://doi.org/10.1016/S0254-0584(98)00217-X
  4. Durães L., Maia A., Portugal A. // J. Supercrit. Fluids. 2015. V. 106. P. 85. https://doi.org/10.1016/j.supflu.2015.06.020
  5. Ehgartner C.R., Grandl S., Feinle A. et al. // Dalton Trans. 2017. V. 46. P. 8809. https://doi.org/10.1039/C7DT00558J
  6. Zhang G., Li C., Wang Y. et al. // Gels. 2023. V. 9. № 9. P. 720. https://doi.org/10.3390/gels9090720
  7. Xie L., Wu X., Wang G. et al. // Gels. 2023. V. 9. № 4. P. 317. https://doi.org/10.3390/gels9040317
  8. Li L., Xu T., Zhang F. et al. // Gels. 2023. V. 9. № 9. P. 739. https://doi.org/10.3390/gels9090739
  9. Chen L., Li L., Zhang X. // Nat. Commun. 2025. V. 16. P. 2228. https://doi.org/10.1038/s41467-025-57246-2
  10. Lamy-Mendes A., Torres R.B., Vareda J.P. et al. // Molecules. 2019. V. 24. № 20. P. 3701. https://doi.org/10.3390/molecules24203701
  11. Sipyagina N.A., Malkova A.N., Straumal E.A. et al. // J. Porous Mater. 2023. V. 30. P. 449. https://doi.org/10.1007/s10934-022-01357-4
  12. Yorov K.E., Kottsov S.Y., Baranchikov А.Е. et al. // J. Sol-Gel Sci. Technol. 2019. V. 92. P. 304. https://doi.org/10.1007/s10971-019-04958-9
  13. Keshavarz L., Ghaani M.R., English N.J. // Molecules. 2021. V. 26. № 16. P. 5023. https://doi.org/10.3390/molecules26165023
  14. Lermontov S.A., Sipyagina N.A., Malkova A.N. et al. // RSC Adv. 2016. V. 6. P. 80766. https://doi.org/10.1039/c6ra15444a
  15. Meti P., Wang Q., Mahadik D.B. et al. // Nanomaterials (Basel). 2023. V. 13. № 9. P. 1498. https://doi.org/10.3390/nano13091498
  16. Zhao Z., Pan Y., Yan M. et al. // J. Sol-Gel Sci. Technol. 2024. V. 112. P. 127. https://doi.org/10.1007/s10971-024-06518-2
  17. Yan Q., Feng Z., Luo J. et al. // Energу Buildings. 2022. V. 255. P. 111661. https://doi.org/10.1016/j.enbuild.2021.111661
  18. Yu Y., Guo D., Fang J. // J. Porous. Mat. 2015. V. 22. P. 621. https://doi.org/10.1007/s10934-015-9934-8
  19. Sipyagina N.A., Vlasenko N.E., Malkova A.N. et al. // Molecules. 2024. V. 29. № 8. P. 1868. https://doi.org/10.3390/molecules29081868
  20. Hüsing N., Schubert U., Mezei R. et al. // Chem. Mater. 1999. V. 11. № 2. P. 451. https://doi.org/10.1021/cm980756l
  21. Pierre A.C., Pajonk G.M. // Chem. Rev. 2002. V. 102. № 11. P. 4243. https://doi.org/10.1021/cr0101306
  22. Dong H., Brook M.A., Brennan J.D. // J. Mater. Chem. 2005. V. 17. № 11. P. 2807. https://doi.org/10.1021/cm050271e
  23. Borba A., Vareda J.P., Durães L. et al. // New. J. Chem. 2017. V. 41. № 14. P. 6742. https://doi.org/10.1039/c7nj01082f
  24. Baumann T.F., Gash A.E., Chinn S.C. et al. // Chem. Mater. 2005. V. 17. № 2. P. 395. https://doi.org/10.1021/cm048800m
  25. Nadargi D.Y., Rao A.V. // J. Alloys Compd. 2009. V. 467. № 1–2. P. 397. https://doi.org/10.1016/j.jallcom.2007.12.019
  26. Rao A.V. // J. Sol-Gel Sci. Technol. 2019. V. 90. P. 28. https://doi.org/10.1007/s10971-018-4825-5
  27. Rao A.V., Kalesh R.R. // Sci. Technol. Adv. Mater. 2003. V. 4. P. 509. https://doi.org/10.1016/j.stam.2003.12.010
  28. Yamauchi Y., Tenjimbayashi M., Samitsu S. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 35. P. 32381. https://doi.org/10.1021/acsami.9b09524
  29. Wang S., Jiang L. // J. Adv. Mater. 2007. V. 19. № 21. P. 3423. https://doi.org/10.1002/adma.200700934
  30. Rao A.V., Hegde N.D., Hirashima H. // J. Colloid Interface Sci. 2007. V. 305. № 1. P. 124. https://doi.org/10.1016/j.jcis.2006.09.025
  31. Hrubesh L.W., Coronado P.R., Satcher J.H. Jr. // J. Non-Cryst. Solids. 2001. V. 285. № 1-3. P. 328. https://doi.org/10.1016/S0022-3093(01)00475-6
  32. Onda T., Shibuichi S., Satoh N. et al. // Langmuir. 1996. V. 12. № 9. P. 2125. https://doi.org/10.1021/la950418o
  33. Mozetič M. // Polymers. 2023. V. 15. № 24. P. 4668. https://doi.org/10.3390/polym15244668
  34. Сумм Б.Д. и Горюнов Ю.В. Физико-химические основы смачивания и растекания. М.: Химия, 1976.
  35. Rao A.V., Pajonk G.M., Bhagat S.D. et al. // J. Non-Cryst. Solids. 2004. V. 350. P. 216. https://doi.org/10.1016/j.jnoncrysol.2004.06.034
  36. Rao A.V., Pajonk GM. // J. Non-Cryst. Solids. 2001. V. 285. № 1–3. P. 202. https://doi.org/10.1016/S0022-3093(01)00454-9
  37. Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
  38. Sai H.Z., Xing L., Xiang J.H. et al. // Key Eng. Mater. 2012. V. 512–515. P. 1625. https://doi.org/10.4028/www.scientific.net/KEM.512-515.1625
  39. Park K.W., Kim J.Y., Seo H.J. et al. // Sci. Rep. 2019. V. 9. P. 13360. https://doi.org/10.1038/s41598-019-50053-y
  40. Chen D., Wang X., Ding W. et al. // Molecules. 2018. V. 23. № 12. P. 3192. https://doi.org/10.3390/molecules23123192

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Application
Download (445KB)
3. Fig. 1. Scheme of the synthesis of modified silanes.

Download (18KB)
4. Fig. 2. Scheme of the gelation process (hydrolysis and condensation) of tetraalkoxysilane.

Download (4KB)
5. Fig. 3. IR spectra of samples obtained using modified silanes as co-precursors.

Download (19KB)
6. Fig. 4. Micrographs of aerogel samples SiO2-acet (a), SiO2-val (b), SiO2-pelarg (c) and SiO2-stear (d).

Download (64KB)
7. Fig. 5. A drop of water (10 μl) on the surface of samples SiO2-pelarg (a) and SiO2-stear (b).

Download (18KB)
8. Fig. 6. Complete nitrogen adsorption/desorption isotherms for modified aerogels. Pore size distribution (inset).

Download (42KB)

Copyright (c) 2025 Russian Academy of Sciences