The impact of alkyl chain length on the properties of SiO2-based aerogels
- Authors: Gozhikova I.O.1, Straumal E.A.1, Kottsov S.Y.2, Postnova E.Y.3, Lermontov S.A.1
-
Affiliations:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Institute of Solid State Physics, Russian Academy of Sciences
- Issue: Vol 70, No 7 (2025)
- Pages: 959-968
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjmseer.com/0044-457X/article/view/689616
- DOI: https://doi.org/10.31857/S0044457X25070129
- EDN: https://elibrary.ru/JONXPJ
- ID: 689616
Cite item
Abstract
Modified silica aerogels were obtained by co-gelation of tetramethoxysilane and acylated 3-aminopropyl-trimethoxysilane (with the general formula (MeO)3–Si–(CH2)3–NHC(O)–R), followed by supercritical drying in CO2. Methyl esters of acetic, valeric, pelargonic, and stearic acids were used as acylating agents. The resulting aerogels were characterized using low-temperature nitrogen adsorption, scanning electron microscopy (SEM), and infrared spectroscopy (IR). It was shown that the specific surface area of the aerogels significantly depends on the length of the alkyl substituent in the modified silane and can vary from 40 to 1375 m²/g. An increase in the length of the alkyl substituent also leads to increased hydrophobicity of the aerogel, up to the formation of superhydrophobic materials (contact angle is 163.7°).
Full Text

About the authors
I. O. Gozhikova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: lenochka.chg@gmail.com
Institute of Physiologically Active Compounds
Russian Federation, 1 Severnij pr., Chernogolovka, 142432E. A. Straumal
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: lenochka.chg@gmail.com
Institute of Physiologically Active Compounds
Russian Federation, 1 Severnij pr., Chernogolovka, 142432S. Yu. Kottsov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: lenochka.chg@gmail.com
Russian Federation, Moscow, 119991
E. Yu. Postnova
Institute of Solid State Physics, Russian Academy of Sciences
Email: lenochka.chg@gmail.com
Russian Federation, 2 Academician Ossipyan str., Chernogolovka, 142432
S. A. Lermontov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: lenochka.chg@gmail.com
Institute of Physiologically Active Compounds
Russian Federation, 1 Severnij pr., Chernogolovka, 142432References
- Евстропьев С.К., Солдярова В.Л., Сатаровский А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 3. С. 394. https://doi.org/10.1134/S0036023623603446
- Бегимкулова С.В., Насимов А.М., Рузимударов А.М. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 537. https://doi.org/10.1134/S0036023624600485
- Wagh P.B., Begag R., Pajonk G.M. et al. // Mater. Chem. Phys. 1999. V. 57. № 3. P. 214. https://doi.org/10.1016/S0254-0584(98)00217-X
- Durães L., Maia A., Portugal A. // J. Supercrit. Fluids. 2015. V. 106. P. 85. https://doi.org/10.1016/j.supflu.2015.06.020
- Ehgartner C.R., Grandl S., Feinle A. et al. // Dalton Trans. 2017. V. 46. P. 8809. https://doi.org/10.1039/C7DT00558J
- Zhang G., Li C., Wang Y. et al. // Gels. 2023. V. 9. № 9. P. 720. https://doi.org/10.3390/gels9090720
- Xie L., Wu X., Wang G. et al. // Gels. 2023. V. 9. № 4. P. 317. https://doi.org/10.3390/gels9040317
- Li L., Xu T., Zhang F. et al. // Gels. 2023. V. 9. № 9. P. 739. https://doi.org/10.3390/gels9090739
- Chen L., Li L., Zhang X. // Nat. Commun. 2025. V. 16. P. 2228. https://doi.org/10.1038/s41467-025-57246-2
- Lamy-Mendes A., Torres R.B., Vareda J.P. et al. // Molecules. 2019. V. 24. № 20. P. 3701. https://doi.org/10.3390/molecules24203701
- Sipyagina N.A., Malkova A.N., Straumal E.A. et al. // J. Porous Mater. 2023. V. 30. P. 449. https://doi.org/10.1007/s10934-022-01357-4
- Yorov K.E., Kottsov S.Y., Baranchikov А.Е. et al. // J. Sol-Gel Sci. Technol. 2019. V. 92. P. 304. https://doi.org/10.1007/s10971-019-04958-9
- Keshavarz L., Ghaani M.R., English N.J. // Molecules. 2021. V. 26. № 16. P. 5023. https://doi.org/10.3390/molecules26165023
- Lermontov S.A., Sipyagina N.A., Malkova A.N. et al. // RSC Adv. 2016. V. 6. P. 80766. https://doi.org/10.1039/c6ra15444a
- Meti P., Wang Q., Mahadik D.B. et al. // Nanomaterials (Basel). 2023. V. 13. № 9. P. 1498. https://doi.org/10.3390/nano13091498
- Zhao Z., Pan Y., Yan M. et al. // J. Sol-Gel Sci. Technol. 2024. V. 112. P. 127. https://doi.org/10.1007/s10971-024-06518-2
- Yan Q., Feng Z., Luo J. et al. // Energу Buildings. 2022. V. 255. P. 111661. https://doi.org/10.1016/j.enbuild.2021.111661
- Yu Y., Guo D., Fang J. // J. Porous. Mat. 2015. V. 22. P. 621. https://doi.org/10.1007/s10934-015-9934-8
- Sipyagina N.A., Vlasenko N.E., Malkova A.N. et al. // Molecules. 2024. V. 29. № 8. P. 1868. https://doi.org/10.3390/molecules29081868
- Hüsing N., Schubert U., Mezei R. et al. // Chem. Mater. 1999. V. 11. № 2. P. 451. https://doi.org/10.1021/cm980756l
- Pierre A.C., Pajonk G.M. // Chem. Rev. 2002. V. 102. № 11. P. 4243. https://doi.org/10.1021/cr0101306
- Dong H., Brook M.A., Brennan J.D. // J. Mater. Chem. 2005. V. 17. № 11. P. 2807. https://doi.org/10.1021/cm050271e
- Borba A., Vareda J.P., Durães L. et al. // New. J. Chem. 2017. V. 41. № 14. P. 6742. https://doi.org/10.1039/c7nj01082f
- Baumann T.F., Gash A.E., Chinn S.C. et al. // Chem. Mater. 2005. V. 17. № 2. P. 395. https://doi.org/10.1021/cm048800m
- Nadargi D.Y., Rao A.V. // J. Alloys Compd. 2009. V. 467. № 1–2. P. 397. https://doi.org/10.1016/j.jallcom.2007.12.019
- Rao A.V. // J. Sol-Gel Sci. Technol. 2019. V. 90. P. 28. https://doi.org/10.1007/s10971-018-4825-5
- Rao A.V., Kalesh R.R. // Sci. Technol. Adv. Mater. 2003. V. 4. P. 509. https://doi.org/10.1016/j.stam.2003.12.010
- Yamauchi Y., Tenjimbayashi M., Samitsu S. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 35. P. 32381. https://doi.org/10.1021/acsami.9b09524
- Wang S., Jiang L. // J. Adv. Mater. 2007. V. 19. № 21. P. 3423. https://doi.org/10.1002/adma.200700934
- Rao A.V., Hegde N.D., Hirashima H. // J. Colloid Interface Sci. 2007. V. 305. № 1. P. 124. https://doi.org/10.1016/j.jcis.2006.09.025
- Hrubesh L.W., Coronado P.R., Satcher J.H. Jr. // J. Non-Cryst. Solids. 2001. V. 285. № 1-3. P. 328. https://doi.org/10.1016/S0022-3093(01)00475-6
- Onda T., Shibuichi S., Satoh N. et al. // Langmuir. 1996. V. 12. № 9. P. 2125. https://doi.org/10.1021/la950418o
- Mozetič M. // Polymers. 2023. V. 15. № 24. P. 4668. https://doi.org/10.3390/polym15244668
- Сумм Б.Д. и Горюнов Ю.В. Физико-химические основы смачивания и растекания. М.: Химия, 1976.
- Rao A.V., Pajonk G.M., Bhagat S.D. et al. // J. Non-Cryst. Solids. 2004. V. 350. P. 216. https://doi.org/10.1016/j.jnoncrysol.2004.06.034
- Rao A.V., Pajonk GM. // J. Non-Cryst. Solids. 2001. V. 285. № 1–3. P. 202. https://doi.org/10.1016/S0022-3093(01)00454-9
- Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
- Sai H.Z., Xing L., Xiang J.H. et al. // Key Eng. Mater. 2012. V. 512–515. P. 1625. https://doi.org/10.4028/www.scientific.net/KEM.512-515.1625
- Park K.W., Kim J.Y., Seo H.J. et al. // Sci. Rep. 2019. V. 9. P. 13360. https://doi.org/10.1038/s41598-019-50053-y
- Chen D., Wang X., Ding W. et al. // Molecules. 2018. V. 23. № 12. P. 3192. https://doi.org/10.3390/molecules23123192
Supplementary files
