Electrochromic properties of β-V2O5 film and its preparation using vanadyl alkoxoacetylacetonate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Using alkoxoacetylacetonate vanadyl, a vanadium pentaoxide film crystallized as a tetragonal β-V2O5 modification was obtained by dip coating technique. The material is significantly textured along the axis (200) and is formed of one-dimensional structures with an aspect ratio of no less than 10, some of which are consolidated into agglomerates within which the particles are touching with long faces. According to the results of Raman spectroscopy and the value of electron work function for the film surface (4.63 eV), measured by KPFM, the oxide contains a noticeable amount of V4+. The obtained material, from the electrochromic properties point of view, is anodic, changing color during reduction to pale blue, and during oxidation — to less transparent yellow-orange. The optical contrast reaches 27% in the blue part of the visible spectrum. The results of the study allow us to conclude that β-V2O5-based materials obtained using alkoxoacetylacetonate vanadyl are promising for use as a component of electrochromic devices.

Full Text

Restricted Access

About the authors

Ph. Yu. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: phigoros@gmail.com
Russian Federation, Moscow, 119991

N. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
Russian Federation, Moscow, 119991

T. L. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
Russian Federation, Moscow, 119991

E. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
Russian Federation, Moscow, 119991

References

  1. Devthade V., Lee S. // J. Appl. Phys. 2020. V. 128. № 23. P. 231101. https://doi.org/10.1063/5.0027690
  2. Yao J., Li Y., Massé R.C. et al. // Energy Storage Mater. 2018. V. 11. P. 205. https://doi.org/10.1016/j.ensm.2017.10.014
  3. Yue Y., Liang H. // Adv. Energy. Mater. 2017. V. 7. № 17. P. 1. https://doi.org/10.1002/aenm.201602545
  4. Enjalbert R., Galy J. // Acta Crystallog. 1986. V. 42. № 11. P. 1467. https://doi.org/10.1524/zkri.1971.133.133.75
  5. Kumar M., Kim Y., Lee H.H. // Cur. Appl.Phys. 2021. V. 30. P. 85. https://doi.org/10.1016/j.cap.2021.09.011
  6. Wu C., Xie Y. // Energy Environ. Sci. 2010. V. 3. № 9. P. 1191. https://doi.org/10.1039/c0ee00026d
  7. Liu M., Su B., Tang Y. et al. // Adv. Energy. Mater. 2017. V. 7. № 23. https://doi.org/10.1002/aenm.201700885
  8. Wachs I.E. // Dalton Transactions. 2013. V. 42. № 33. P. 11762. https://doi.org/10.1039/c3dt50692d
  9. Hu P., Hu P., Vu T.D. et al. // Chem. Rev. 2023. V. 123. № 8. P. 4353. https://doi.org/10.1021/acs.chemrev.2c00546
  10. Tan H.T., Rui X., Sun W. et al. // Nanoscale. 2015. V. 7. № 35. P. 14595. https://doi.org/10.1039/c5nr04126k
  11. Zhang N., Dong Y., Jia M. et al. // ACS Energy Lett. 2018. V. 3. № 6. P. 1366. https://doi.org/10.1021/acsenergylett.8b00565
  12. Mattelaer F., Geryl K., Rampelberg G. et al. // RSC Adv. 2016. V. 6. № 115. P. 114658. https://doi.org/10.1039/C6RA25742A
  13. Liu F., Chen Z., Fang G. et al. // Nanomicro. Lett. 2019. V. 11. № 1. P. 1. https://doi.org/10.1007/s40820-019-0256-2
  14. Wang Y., Lubbers T., Xia R. et al. // J. Electrochem. Soc. 2021. V. 168. № 2. P. 020507. https://doi.org/10.1149/1945-7111/abdef2
  15. Khan Z., Singh P., Ansari S.A. et al. // Small. 2021. V. 17. № 4. P. 1. https://doi.org/10.1002/smll.202006651
  16. Majumdar D., Mandal M., Bhattacharya S.K. // Chem. Electro. Chem. 2019. V. 6. № 6. P. 1623. https://doi.org/10.1002/celc.201801761
  17. Foo C.Y., Sumboja A., Tan D.J.H. et al. // Adv. Energy. Mater. 2014. V. 4. № 12. P. 1. https://doi.org/10.1002/aenm.201400236
  18. Narayanan R. // J. Solid State Chem. 2017. V. 253. № May. P. 103. https://doi.org/10.1016/j.jssc.2017.05.035
  19. Granqvist C.G. // Thin Solid Films. 2014. V. 564. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
  20. Mortimer R.J. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
  21. Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
  22. Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
  23. Granqvist C.G., Arvizu M.A., Qu H.Y. et al. // Surf. Coat. Technol. 2019. V. 357. P. 619. https://doi.org/10.1016/j.surfcoat.2018.10.048
  24. Granqvist C.G., Arvizu M.A., Bayrak Pehlivan et al. // Electrochim. Acta. 2018. V. 259. P. 1170. https://doi.org/10.1016/j.electacta.2017.11.169
  25. Vernardou D. // Coatings. 2017. V. 7. № 2. P. 1. https://doi.org/10.3390/coatings7020024
  26. Iida Y., Kaneko Y., Kanno Y. // J. Mater. Process. Technol. 2008. V. 197. № 1–3. P. 261. https://doi.org/10.1016/j.jmatprotec.2007.06.032
  27. Tong Z., Hao J., Zhang K. et al. // J. Mater. Chem. C Mater. 2014. V. 2. № 18. P. 3651. https://doi.org/10.1039/c3tc32417f
  28. Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C Mater. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
  29. Gorobtsov P.Y., Simonenko N.P., Simonenko T.L. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1580. https://doi.org/10.1134/S0036023624602277
  30. Горобцов Ф.Ю., Симоненко Н.П., Мокрушин А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 624. https://doi.org/10.31857/S0044457X24040177
  31. Jin A., Chen W., Zhu Q. et al. // Electrochim. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
  32. Jeyalakshmi K., Vijayakumar S., Nagamuthu S. et al. // Mater. Res. Bull. 2013. V. 48. № 2. P. 760. https://doi.org/10.1016/j.materresbull.2012.11.054
  33. Asadov A., Mukhtar S., Gao W. // J. Vac. Sci. Tech. B. 2015. V. 33. № 4. https://doi.org/10.1116/1.4922628
  34. Khlayboonme S.T., Thedsakhulwong A. // Mater. Res. Express. 2022. V. 9. № 7. https://doi.org/10.1088/2053-1591/ac827a
  35. Khlayboonme S.T. // Results. Phys. 2022. V. 42. P. 106000. https://doi.org/10.1016/j.rinp.2022.106000
  36. Filonenko V.P., Sundberg M., Werner P.E. et al. // Acta Crystallogr. B. 2004. V. 60. № 4. P. 375. https://doi.org/10.1107/S0108768104012881
  37. Talledo A., Valdivia H., Benndorf C. // J. Vac. Sci. Tech. 2003. V. 21. № 4. P. 1494. https://doi.org/10.1116/1.1586282
  38. Zou C., Fan L., Chen R. et al. // Cryst. Eng. Comm. 2012. V. 14. № 2. P. 626. https://doi.org/10.1039/c1ce06170d
  39. Shvets P., Dikaya O., Maksimova K. et al. // J. Raman Spectr. 2019. V. 50. № 8. P. 1226. https://doi.org/10.1002/jrs.5616
  40. Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
  41. Clauws P., Broeckx J., Vennik J. // Physica Status Solidi (B). 1985. V. 131. № 2. P. 459. https://doi.org/10.1002/pssb.2221310207
  42. Abello L., Husson E., Repelin Y. et al. // Spectrochim. Acta A. 1983. V. 39. P. 641.
  43. Zhou B., He D. // J. Raman Spectr. 2008. V. 39. № 10. P. 1475. https://doi.org/10.1002/jrs.2025
  44. Baddour-Hadjean R., Marzouk A., Pereira-Ramos J.P. // J. Raman Spectr. 2012. V. 43. № 1. P. 153. https://doi.org/10.1002/jrs.2984
  45. Schilbe P. // Physica B. 2002. V. 316–317. P. 600.
  46. Ji Y., Zhang Y., Gao M. et al. // Sci. Rep. 2014. V. 4. https://doi.org/10.1038/srep04854
  47. Meyer J., Zilberberg K., Riedl T. et al. // J. Appl. Phys. 2011. V. 110. № 3. https://doi.org/10.1063/1.3611392
  48. Zhang H., Wang S., Sun X. et al. // J. Mater. Chem. C. Mater. 2017. V. 5. № 4. P. 817. https://doi.org/10.1039/c6tc04050k
  49. Choi S.G., Seok H.J., Rhee S. et al. // J. Alloys. Compd. 2021. V. 878. https://doi.org/10.1016/j.jallcom.2021.160303
  50. Peng H., Sun W., Li Y. et al. // Nano. Res. 2016. V. 9. № 10. P. 2960. https://doi.org/10.1007/s12274-016-1181-z
  51. Gorobtsov P.Yu., Mokrushin A.S., Simonenko T.L. et al. // Materials. 2022. V. 15. № 21. P. 7837. https://doi.org/10.3390/ma15217837
  52. Cholant C.M., Westphal T.M., Balboni R.D.C. et al. // J. Sol. State Electrochem. 2017. V. 21. № 5. P. 1509. https://doi.org/10.1007/s10008-016-3491-1
  53. Patil C.E., Tarwal N.L., Jadhav P.R. et al. // Cur. Appl. Physics. 2014. V. 14. № 3. P. 389. https://doi.org/10.1016/j.cap.2013.12.014
  54. Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2019. V. 321. P. 134743. https://doi.org/10.1016/j.electacta.2019.134743
  55. Panagopoulou M., Vernardou D., Koudoumas E. et al. // J. Phys. Chem. 2017. V. 121. № 1. P. 70. https://doi.org/10.1021/acs.jpcc.6b09018
  56. Jin A., Chen W., Zhu Q. et al. // Thin Solid Films. 2009. V. 517. № 6. P. 2023. https://doi.org/10.1016/j.tsf.2008.10.001
  57. Mjejri I., Gaudon M., Rougier A. // Solar Energy Materials and Solar Cells. 2019. V. 198. № December 2018. P. 19. https://doi.org/10.1016/j.solmat.2019.04.010
  58. Sajitha S., Aparna U., Deb B. // Adv. Mater. Interfaces. 2019. V. 6. № 21. P. 1. https://doi.org/10.1002/admi.201901038
  59. Surca A.K., Dražić G., Mihelčič M. // Solar Energy Materials and Solar Cells. 2019. V. 196. P. 185. https://doi.org/10.1016/j.solmat.2019.03.017

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction pattern (a) and Raman spectrum (b) of vanadium oxide film on glass substrate after heat treatment at 400°C (2 h). Reflections of tetragonal modification β-V2O5 are marked with an asterisk.

Download (29KB)
3. Fig. 2. Results of optical (a) and scanning electron microscopy (b–d) of the obtained vanadium oxide film, as well as particle length distribution.

Download (92KB)
4. Fig. 3. AFM results of β-V2O5 film: a, b, c — topographic images, d — surface potential distribution map.

Download (75KB)
5. Fig. 4. Results of measuring the electrochromic properties of V2O5 film: a — cell transmission spectra in the visible and near IR ranges before measurements and 3 min after exposure at different potential values; b — change in the cell transmittance at a wavelength of 490 nm and holding for 180 s at 2.2 V and 180 s at –2.5 V; c — CVA recorded with a potential change rate of 50 mV/s; d — change in the transmittance of an electrochromic cell based on a V2O5 film at a wavelength of 490 nm and potential sweep during CVA recording.

Download (58KB)

Copyright (c) 2025 Russian Academy of Sciences