Formation of sodium zirconium silicophosphate with the structure Na3Zr2Si2РO12 from a Zr-deficient precursor

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Samples of NASICON glass-ceramics were synthesized by pyrolysis of a mixture of organic solutions in molten rosin. The article discusses the phase formation, morphology and characteristics of the obtained silicophosphates. The composition formed from the precursor with the molar ratio of components Na : Zr : Si : P equal to 3 : 1.33 : 2 : 1 was selected for study. The effect of additional amounts of phosphorus on the phase composition of the sample was studied. It was found that the precursor of the composition 3 : 1.33 : 2 : 1.15 forms densely sintered glass-ceramics containing a crystalline phase of the composition Na3Zr2Si2PO12. The composition of the product is confirmed by the unit cell parameters calculated by the Rietveld method. The samples were obtained at a temperature of 1000 and 1100°С without pressing and have densities of 85 and 88% of the theoretical value, respectively. It was concluded that Na, Si, P not included in the crystal lattice participate in the formation of the X-ray amorphous phase and provide conditions for the formation of NASICON by the type of liquid-phase sintering. A comparative characteristic of the properties of the Na3Zr2Si2PO12 composition obtained from Zr-deficient and non-deficient precursors was carried out. It is shown that the glass phase formed in the intergranular space of Zr-deficient samples negatively affects the conductivity values of the material.

Texto integral

Acesso é fechado

Sobre autores

D. Grishchenko

Institute of Chemistry, Far East Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: grishchenko@ich.dvo.ru
Rússia, Vladivostok, 690022

M. Medkov

Institute of Chemistry, Far East Branch of the Russian Academy of Sciences

Email: grishchenko@ich.dvo.ru
Rússia, Vladivostok, 690022

Bibliografia

  1. Fergus J-W. // Solid State Ionics. 2012. V. 227. P. 102. https://doi.org/10.1016/j.ssi.2012.09.019
  2. Fuentes R.O., Marques F.M.B., Franco J.I. // Bol. Soc. Esp. Cerám. Vidrio. 1999. V. 38. № 6. P. 631.
  3. Ignaszak A., Pasierb P., Gajerski R., Komornicki S. // Thermochim. Acta. 2005. V. 426. № 1–2. P. 7. https://doi.org/10.1016/j.tca.2004.07.002
  4. Грищенко Д.Н., Курявый В.Г., Подгорбунский А.Б., Медков М.А. // Журн. неорган. химии. 2023. Т. 68. № 1. С. 17. https://doi.org/10.31857/S0044457X22601043
  5. Jalalian-Khakshour A., Phillips Ch., Jackson L. et al. // J. Mater. Sci. 2020. V. 55. P. 2291. https://doi.org/10.1007/s10853-019-04162-8
  6. Shimizu Y., Azuma Y., Michishita S. // J. Mater. Chem. 1997. V. 7. № 8. P. 1487.
  7. Zhang S., Quan B., Zhiyong Z. et al. // Mater. Lett. 2004. V. 58. № 1. P. 226. https://doi.org/10.1016/S0167-577X(03)00450-6
  8. Porkodi P., Yegnaraman V., Kamaraj P. et al. // Chem. Mater. 2008. V. 20. P. 6410. https://doi.org/10.1021/cm800208k
  9. Naqash S., Sebold D., Tietz F., Guillon O. // J. Am. Ceram. Soc. 2018. V. 102. № 3. P. 1057. https://doi.org/10.1111/jace.15988
  10. Naqash S., Ma Q., Tietz F., Guillon O. // Solid State Ionics. 2017. V. 302. P. 83. http://dx.doi.org/10.1016/j.ssi.2016.11.004
  11. Alpen U. V., Bell M.F., Höfer H.H. // Solid State Ionics. 1981. V. 3–4. P. 215. https://doi.org/10.1016/0167-2738(81)90085-0
  12. Susman S., Delbecq C.J., McMillan J.A., Roche M.F. // Solid State Ionics. 1983. V. 9–10. P. 667. https://doi.org/10.1016/0167-2738(83)90312-0
  13. Wang H., Zhao G., Wang S. et al. // Nanoscale. 2022. V. 14. № 3. P. 823. https://doi.org/10.1039/d1nr06959d
  14. Oh J.A.S., He L., Plewa A. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 40125. https://doi.org/10.1021/acsami.9b14986
  15. Ji Y., Honma T., Komatsu T. // Materials. 2021. V. 14. № 14. P. 3790. https://doi.org/10.3390/ma14143790
  16. Narayanan S., Reid S., Butler S., Thangadurai V. // Solid State Ionics. 2019. V. 331. P. 22. https://doi.org/10.1016/j.ssi.2018.12.003
  17. Грищенко Д.Н., Подгорбунский А.Б., Медков М.А. // Журн. неорган. химии. 2024. Т. 69. № 2. С. 15. https://doi.org/10.31857/S0044457X24020025
  18. Rao Y.B., Bharathi K.K., Patro L.N. // Solid State Ionics. 2021. V. 366–367. P. 115671. https://doi.org/10.1016/j.ssi.2021.115671
  19. Грищенко Д.Н., Медков М.А. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1042. https://doi.org/10.31857/S0044457X23600366
  20. Bauerle J.E. // J. Phys. Chem. Solids. 1969. V. 30. P. 2657. https://doi.org/10.1016/0022-3697(69)90039-0
  21. Зарецкая Г.Н. // Современные наукоемкие технологии. 2007. № 6. С. 51. https://top-technologies.ru/ru/article/view?id=24998
  22. Соколов И.А., Мурин И.В., Крийт В.Е., Пронкин А.А. // Электрохимия. 2011. Т. 47. № 4. C. 436.
  23. Fuentes R.O., Figueiredo F.M., Marques F.M.B., Franco J.I. // Solid State Ionics. 2001. V. 140. № 1–2. P. 173. https://doi.org/10.1016/S0167-2738(01)00701-9
  24. Lee J. S., Chang C. M., Lee Y. I. et al. // J. Am. Ceram. Soc. 2004. V. 87. № 2. P. 305. https://doi.org/10.1111/j.1551-2916.2004.00305.x
  25. Suzuki K., Noi K., Hayashi A., Tatsumisago M. // Scripta Mater. 2018. V. 145. P. 67. https://doi.org/10.1016/j.scriptamat.2017.10.010
  26. Tang B. // Appl. Comput. Eng. 2024. V. 91. № 1. P. 89. https://doi.org/10.54254/2755-2721/91/20241079

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffraction patterns of samples with the ratio of components in the precursor Na : Zr : Si : P = 3 : 1.33 : 2 : 1 (mol), annealed at 700 (1); 800 (2); 900 (3); 1000°C (4).

Baixar (97KB)
3. Fig. 2. Diffraction patterns of samples with the ratio of components in the precursor Na : Zr : Si : P (mol) = 3 : 1.33 : 2 : 1.1 (1); 3 : 1.33 : 2 : 1.15 (2); 3 : 1.33 : 2 : 1.2 (3).

Baixar (80KB)
4. Fig. 3. The main diffraction maxima of the samples with the ratio of components in the precursor Na : Zr : Si : P (mol) = 3 : 1.33 : 2 : 1 (1); 3 : 1.33 : 2 : 1.1 (2); 3 : 1.33 : 2 : 1.15 (3); 3 : 1.33 : 2 : 1.2 (4).

Baixar (118KB)
5. Fig. 4. X-ray diffraction patterns of Na3.12Zr2Si2.12Р0.88O12 (PDF 01-084-1317) (a) and Na3Zr2Si2PO12 (PDF 01-084-1200) (b).

Baixar (63KB)
6. Fig. 5. Graphical results of refining the structure of sample 3 using the Rietveld method.

Baixar (181KB)
7. Fig. 6. Micrographs of samples with the precursor composition Na:Zr:Si:P = 3:1.33:2:1.15 (mol.), obtained at a firing temperature of 1000 (a) and 1100°C (b).

Baixar (337KB)
8. Fig. 7. Micrograph of a sample obtained from the precursor Na:Zr:Si:P = 3.15:2:2:1.2 (mol).

Baixar (180KB)
9. Fig. 8. Impedance spectra of samples and equivalent circuit (a); high-frequency region of the spectrum (b).

Baixar (135KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025