Синтез и свойства твердоуглеродных материалов из вискозного волокна, допированного молибденом, для отрицательных электродов натрий-ионных аккумуляторов
- Авторы: Железнов В.В.1, Саенко Н.С.1, Майоров В.Ю.1, Устинов А.Ю.1, Сокольницкая Т.А.1, Курявый В.Г.1, Шлык Д.Х.1, Соколов А.А.1, Опра Д.П.1
-
Учреждения:
- Институт химии ДВО РАН
- Выпуск: Том 68, № 3 (2023)
- Страницы: 373-382
- Раздел: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjmseer.com/0044-457X/article/view/665291
- DOI: https://doi.org/10.31857/S0044457X22600931
- EDN: https://elibrary.ru/JBIXIM
- ID: 665291
Цитировать
Аннотация
Предложен метод синтеза твердого углерода путем карбонизации химически модифицированной (допированной молибденом) коммерчески доступной технической вискозной нити. Изучено влияние молибденсодержащей добавки на условия карбонизации. Отмечено, что продукты карбонизации сохраняют волокнистое строение и гибкость. Изучены структурные особенности синтезированных твердоуглеродных материалов, обнаружена их взаимосвязь с температурой карбонизации и содержанием вводимого молибденсодержащего допанта. Исследована текстура материалов, выявлена корреляция удельной площади поверхности и пористости с условиями синтеза. Рассмотрена возможность использования полученных продуктов в роли анодных материалов для натрий-ионных аккумуляторов. Сопоставление результатов электрохимических испытаний с известными данными свидетельствует об индуцированной молибденом под действием температуры структурной перестройке углеродного каркаса, сопровождающейся ростом и упорядочением графитоподобных нанокластеров. Материал, полученный при температуре 1050°С, показал наилучшие электрохимические характеристики и способность к устойчивому циклированию с емкостью 290 мА ч/г при 25 мА/г.
Ключевые слова
Об авторах
В. В. Железнов
Институт химии ДВО РАН
Email: ttt@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159
Н. С. Саенко
Институт химии ДВО РАН
Email: ttt@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159
В. Ю. Майоров
Институт химии ДВО РАН
Email: ttt@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159
А. Ю. Устинов
Институт химии ДВО РАН
Email: ttt@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159
Т. А. Сокольницкая
Институт химии ДВО РАН
Email: ttt@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159
В. Г. Курявый
Институт химии ДВО РАН
Email: ttt@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159
Д. Х. Шлык
Институт химии ДВО РАН
Email: ttt@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159
А. А. Соколов
Институт химии ДВО РАН
Email: ttt@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159
Д. П. Опра
Институт химии ДВО РАН
Автор, ответственный за переписку.
Email: ttt@ich.dvo.ru
Россия, 690022, Владивосток, пр-т 100-летия Владивостока, 159
Список литературы
- Xie F., Xu Z., Guo Z. et al. // Prog. Energy. 2020. V. 2. № 4. P. 042002. https://doi.org/10.1088/2516-1083/aba5f5
- Ma J., Li Y., Grundish N.S. et al. // J. Phys. D: Appl. Phys. 2021. V. 54. № 18. P. 183001. https://doi.org/10.1088/1361-6463/abd353
- Xu G., Amine R., Abouimrane A. et al. // Adv. Energy Mater. 2018. V. 8. № 14. P. 1702403. https://doi.org/10.1002/aenm.201702403
- Mukherjee S., Bin Mujib S., Soares D. et al. // Materials (Basel). 2019. V. 12. P. 1952. https://doi.org/10.3390/ma12121952
- Yu P., Tang W., Wu F.-F. et al. // Rare Met. 2020. V. 39. № 9. P. 1019. https://doi.org/10.1007/s12598-020-01443-z
- Simone V., Boulineau A., de Geyer A. et al. // J. Energy Chem. 2016. V. 25. № 5. P. 761. https://doi.org/10.1016/j.jechem.2016.04.016
- Li Y., Hu Y.-S., Titirici M.-M. et al. // Adv. Energy Mater. 2016. V. 6. № 18. P. 1600659. https://doi.org/10.1002/aenm.201600659
- Yamamoto H., Muratsubaki S., Kubota K. et al. // J. Mater. Chem. A. 2018. V. 6. № 35. P. 16844. https://doi.org/10.1039/C8TA05203D
- Hou H., Qiu X., Wei W. et al. // Adv. Energy Mater. 2017. V. 7. № 24. P. 1602898. https://doi.org/10.1002/aenm.201602898
- Wang W., Li W., Wang S. et al. // J. Mater. Chem. A. 2018. V. 6. № 15. P. 6183. https://doi.org/10.1039/c7ta10823k
- Zhu Z., Liang F., Zhou Z. et al. // J. Mater. Chem. A. 2018. V. 6. № 4. P. 1513. https://doi.org/10.1039/C7TA07951F
- Zhang H., Huang Y., Ming H. et al. // J. Mater. Chem. A. 2020. V. 8. № 4. P. 1604. https://doi.org/10.1039/C9TA09984K
- Шандаков С.Д., Вершинина А.И., Ломакин М.В. и др. // Вестн. Кемеровского гос. ун-та. 2015. Т. 2. № 5. С. 127.
- Ге Ч., Фан Ж., Шен Л. и др. // Электрохимия. 2019. Т. 55. № 10. С. 1236. https://doi.org/10.1134/S0424857019080061
- Сморгонская Э.А., Звонарева Т.К., Иванова Е.И. и др. // Физика твердого тела. 2003. Т. 45. № 9. С. 1579.
- Li Y., Ni B., Li X. et al. // Nano-Micro Lett. 2019. V. 11. № 1. P. 60. https://doi.org/10.1007/s40820-019-0291-z
- Xu D., Chen C., Xie J. et al. // Adv. Energy Mater. 2016. V. 6. № 6. P. 1501929. https://doi.org/10.1002/aenm.201501929
- Li Z., Bommier C., Chong Z. Sen et al. // Adv. Energy Mater. 2017. V. 7. № 18. P. 1602894. https://doi.org/10.1002/aenm.201602894
- Zhu C., Mu X., van Aken P.A. et al. // Angew. Chem. 2014. V. 126. № 8. P. 2184. https://doi.org/10.1002/ange.201308354
- David L., Bhandavat R., Singh G. // ACS Nano. 2014. V. 8. № 2. P. 1759. https://doi.org/10.1021/nn406156b
- Zeng L., Zhang L., Liu X. et al. // Polymers (Basel). 2020. V. 12. № 9. P. 2134. https://doi.org/10.3390/polym12092134
- Xie X., Makaryan T., Zhao M. et al. // Adv. Energy Mater. 2016. V. 6. № 5. P. 1. https://doi.org/10.1002/aenm.201502161
- Литвинская В.В., Хохлова Г.П., Кряжев Ю.Г. // Химия твердого топлива. 2003. Т. 2. С. 51.
- Sisu C., Iordanescu R., Stanciu V. et al. // Dig. J. Nanomater. Biostructures. 2016. V. 11. № 2. P. 435.
- Saenko N.S., Ziatdinov A.M. // Mater. Today Proc. 2018. V. 5. № 12. P. 26052. https://doi.org/10.1016/j.matpr.2018.08.028
- Thommes M., Kohn R., Fruba M. // J. Phys. Chem. B. 2000. V. 104. № 33. P. 7932. https://doi.org/10.1021/jp994133m
- Jagiello J., Thommes M. // Carbon. 2004. V. 42. № 7. P. 1227. https://doi.org/10.1016/j.carbon.2004.01.022
- Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
- Fujimoto H., Shiraishi M. // Carbon. 2001. V. 39. P. 1753. https://doi.org/10.1016/S0008-6223(00)00308-0
- Fujimoto H. // Carbon. 2003. V. 41. P. 1585. https://doi.org/10.1016/S0008-6223(03)00116
- Boruah R.K., Saikia B.K., Baruah B.P. et al. // J. Appl. Crystallogr. 2008. V. 41. № 1. P. 27. https://doi.org/10.1107/S0021889807049655
- Biennier L., Georges R., Chandrasekaran V. et al. // Carbon. 2009. V. 47. № 14. P. 3295. https://doi.org/10.1016/j.carbon.2009.07.050
- Biscoe J., Warren B.E. // J. Appl. Phys. 1942. V. 13. № 6. P. 364. https://doi.org/10.1063/1.1714879
- Oberlin A., Bonnamy S., Oshida K. // Tanso. 2006. V. 224. P. 281.
- Ziatdinov A.M., Saenko N.S., Skrylnik P.G. // Russ. J. Inorg. Chem. 2020. V. 65. № 1. P. 133. https://doi.org/10.1134/S0036023620010210
- Dresselhaus M.S., Dresselhaus G. // Adv. Phys. 1981. V. 30. № 2. P. 139. https://doi.org/10.1080/00018738100101367
- Xu K., Pan Q., Zheng F. et al. // Front. Chem. 2019. V. 7. P. 733. https://doi.org/10.3389/fchem.2019.00733
- Bobyleva Z.V., Drozhzhin O.A., Dosaev K.A. et al. // Electrochim. Acta. 2020. V. 354. P. 136647. https://doi.org/10.1016/j.electacta.2020.136647
- Zhao J., Zhao L., Chihara K. et al. // J. Power Sources. 2013. V. 244. P. 752. https://doi.org/10.1016/j.jpowsour.2013.06.109
- Li Y., Zhang L., Wang X. et al. // Research. 2019. № 1. P. 1. https://doi.org/10.34133/2019/6930294
- Han J., Johnson I., Lu Z. et al. // Nano Lett. 2021. V. 21. № 15. P. 6504. https://doi.org/10.1021/acs.nanolett.1c01595
- Yu P., Zhang W., Yang Y. et al. // J. Colloid Interface Sci. 2021. V. 582. P. 852. https://doi.org/10.1016/j.jcis.2020.08.063
Дополнительные файлы
