2-fluorocordycepin: chemoenzymatic synthesis and study of anticancer activities in vitro

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Two methods for obtaining 2-fluorocordycepin were proposed and implemented: chemical synthesis from 2-fluoroadenosine with a yield of 34% and chemical-enzymatic synthesis with a yield of 66%, including the production of 3-deoxyerythropentofuranose-1-phosphate and subsequent transglycosylation using E. coli purine nucleoside phosphorylase. The cytotoxic activity of 2-fluorocordycepin in vitro was assessed. It was shown that 2-fluorocordycepin exhibits an anti-metabolic effect on a number of tumor cell lines (Jurkat, Raji, MCF-7, THP-1, U937, A549, LS174T), which allows us to consider this compound as a promising candidate for the development of antitumor drugs.

Texto integral

Acesso é fechado

Sobre autores

A. Arnautova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Engelhardt Institute of Molecular Biology RAS

Autor responsável pela correspondência
Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Vavilova 32, Moscow, 119991

K. Antonov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

E. Zorina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

М. Simonova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

A. Paramonov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

О. Zhukova

N.N. Blokhin National Medical Research Center of Oncology

Email: arnautova_ibch@mail.ru
Rússia, ul. Kosigina 4/1, Moscow, 119334

M. Kiselevskiy

N.N. Blokhin National Medical Research Center of Oncology

Email: arnautova_ibch@mail.ru
Rússia, ul. Kosigina 4/1, Moscow, 119334

А. Kayushin

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

I. Fateev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

Е. Dorofeeva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

B. Eletskaya

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

М. Berzina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

О. Smirnova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

Т. Egorova

Moscow Pedagogical State University

Email: arnautova_ibch@mail.ru
Rússia, ul. Malaya Pirogovskaya 1/1, Moscow, 119991

R. Esipov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

А. Miroshnikov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

I. Konstantinova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: arnautova_ibch@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

Bibliografia

  1. Cunningham K., Manson, W., Spring F., Hutchinson S. // Nature. 1950. V. 949. P. 166.
  2. Chen Y. J. // Life Sci. 1997. V. 60. P. 2349–2359. https://doi.org/10.1016/S0024-3205(97)00291-9
  3. Ng T.B., Wang H.X. // J. Pharm. Pharmacol. 2005. V. 57. P. 1509–1519. https://doi.org/10.1211/jpp.57.12.0001
  4. Chu C. K., Baker D. C. // Nucleosides and Nucleotides as Antitumor and Antiviral Agents / Eds. Plenum Press: New York, 1993.
  5. Herdewijn, P. // Modified Nucleosides in Biochemistry, Biotechnology and Medicine / Ed. Wiley-VCH: Weinheim, 2008.
  6. Thomadaki H., Scorilas A., Tsiapalis C.M., Havredaki M. // Cancer Chemother Pharmacol. 2008. V. 61. P. 251–265. https://doi.org/10.1007/s00280-007-0533-5
  7. Shao L.W., Huang L.H., Yan S., Jin J.D., Ren S.Y. // Oncol. Lett. 2016. V. 12. P. 995–1000. https://doi.org/10.3892/ol.2016.4706
  8. Zhou Y., Guo Z., Meng, Q., Lu J., Wang N., Liu H., Liang Q., Quan Y., Wang D., Xie J. // Anti-Cancer Agents Med. Chem. 2017. V. 17. P. 143–149. https://doi.org/10.2174/1871520616666160526114555
  9. Lee H.H., Jeong J.-W., Lee J.H., Kim G.-Y., Cheong J., Jeong Y.K., Yoo Y.H., Choi Y.H. // Oncol. Rep. 2013. V. 30. P. 1257–1264. https://doi.org/10.3892/or.2013.2589
  10. Yamamoto K., Shichiri H., Uda A., Yamashita K., Nishioka T., Kume M., Makimoto H., Nakagawa T., Hirano T., Hirai M // Phytother. Res. 2015. V. 29. P. 707– 713. https://doi.org/10.1002/ptr.5305
  11. Hwang J.-H., Joo J.C., Kim D.J., Jo E., Yoo H.-S., Lee K.-B., Park S.J., Jang I.-S. // Am. J. Cancer Res. 2016. V. 6. P. 1758. https://doi.org/2156-6976/ajcr0035711
  12. Joo J.C., Hwang J.H., Jo E., Kim Y.-R., Kim D.J., Lee K.-B., Park S.J., Jang I.-S. // Oncotarget 2017. V. 8. P. 12211–12224. https://doi.org/10.18632/oncotarget.14661
  13. Hwang J.H., Park S.J., Ko W.G., Kang S.-M., Lee D.B., Bang J., Park B.-J., Wee C.-B., Kim D.J., Jang I.-S. // Am. J. Cancer Res. 2017. V. 7. P. 417. https://doi.org/2156-6976/ajcr005071
  14. Tao X., Ning Y., Zhao X., Pan T. // J. Pharm. Pharmacol. 2016. V. 68. P. 901–911. https://doi.org/10.1111/jphp.12544
  15. Zhang C., Zhong Q., Zhang X., Hu D., He X., Li Q., Feng T. // J. Chin. Med. Mater. 2015. V. 38. P. 786–789.
  16. Lee D., Lee W.-Y., Jung K., Kwon Y.S., Kim D., Hwang G.S., Kim C.-E., Lee S., Kang K.S. // Biomolecules 2019. V. 9. P. 414. https://doi.org/10.3390/biom9090414
  17. Tian T., Song L., Zheng Q., Hu X., Yu R. // Pharm. Mag. 2014. V. 10. P. 325–331. https://doi.org/10.4103/0973-1296.137374
  18. Ko B.-S., Lu Y.-J., Yao W.-L., Liu T.-A., Tzean S.-S., Shen T.-L., Liou J.-Y. // PLoS ONE. 2013. V. 8. e76320. https://doi.org/10.1371/journal.pone.0076320
  19. Liao Y., Ling J., Zhang G., Liu F., Tao S., Han Z., Chen S., Chen Z., Le H. // Cell Cycle 2015. V. 14. P. 761–771. https://doi.org/10.1080/15384101.2014.1000097
  20. Baik J.-S., Mun S.-W., Kim K.-S., Park S.-J., Yoon H.-K., Kim D.-H., Park M.-K., Kim C.-H., Lee Y.-C. // J. Microbiol. Biotechnol. 2016. V. 26. P. 309–314. https://doi.org/10.4014/jmb.1507.07090
  21. Li Y., Li R., Zhu S., Zhou R., Wang L., Du J., Wang Y., Zhou B., Ma, L. // Oncol. Lett. 2015. V. 9. P. 2541–2547. https://doi.org/10.3892/ol.2015.3066
  22. Lee S.-J., Moon G.-S., Jung K.-H., Kim W.-J., Moon S.-K. // Food Chem. Toxicol. 2010. V. 48. P. 277– 283. https://doi.org/10.1016/j.fct.2009.09.042
  23. Lee S.-J., Kim S.-K., Choi W.-S., Kim W.-J., Moon S.-K. // Arch. Biochem. Biophys. 2009. V. 490. P. 103–109. https://doi.org/10.1016/j.abb.2009.09.001
  24. Kuchta R.D. // Curr. Protocols Chem. Biol. 2010. V. 2. P. 111–124. https://doi.org/10.1002/9780470559277.ch090203
  25. Klenow H. // Biochim. Biophys. Acta 1963. V. 76. P. 347–353.
  26. Rottman F., Guarino A.J. // Biochim. Biophys. Acta. 1964. V. 89. P. 465–472.
  27. Holbein S., Wengi A., Decourty L., Freimoser F.M., Jacquier A., Dichtl B. // RNA. 2009. V. 15. P. 837–849. https://doi.org/10.1261/rna.1458909
  28. Horowitz B., Goldfinger B.A., Marmur J. // Arch. Biochem. Biophys. 1976. V. 172. P. 143–148. https://doi.org/10.1016/0003-9861(76)90059-x
  29. Müller W.E., Seibert G., Beyer R., Breter H.J., Maidhof A., Zahn R.K. // Cancer Res. 1977. V. 37. P. 3824–3833.
  30. Müller W.E., Weiler B.E., Charubala R., Pfleiderer W., Leserman L., Sobol R.W., Suhadolnik R.J., Schröder // Biochemistry. 1991. V. 30. P. 2027–2033. https://doi.org/10.1021/bi00222a004
  31. Rose R. // N Engl J Med. 1999. V. 340. P. 115–126. https://doi.org/10.1056/NEJM199901143400207
  32. Kim H.G., Shrestha B., Lim S.Y., Yoon D.H., Chang W.C., Shin D.J., Han S.K., Park S.M., Park J.H., Park H.I., Sung J.M., Jang Y., Chung N., Hwang K.C., Kim T.W. // Eur J Pharmacol. 2006. V. 545. P. 192–199. https://doi.org/10.1016/j.ejphar.2006.06.047
  33. Nair C.N., Panicali D.L. // J Virol. 1976. V. 20. P. 170–176. https://doi.org/10.1128/JVI.20.1.170-176.1976
  34. Richardson L.S., Ting R.C., Gallo R.C., Wu A.M. // Int. J. Cancer. 1975. V. 15. P. 451–456. https://doi.org/10.1002/ijc.2910150311
  35. Hashimoto K., Simizu B. // Arch Virol. 1976. V. 52. P. 341–345. https://doi.org/10.1007/BF01315623
  36. Leinwand, L., Ruddle, F.H. // Science. 1977. V. 197. P. 381–383. https://doi.org/10.1126/science.17919
  37. Person A., Ben-Hamida F., Beaud G. // Nature 1980. V. 287. P. 355–357. 0.1038/287355a0
  38. Amgad M. Rabie // ACS Omega. 2022. V. 7. P. 2960– 2969. https://doi.org/10.1021/acsomega.1c05998
  39. Ramesh T., Yoo S.-K., Kim S.-W., Hwang S.-Y., Sohn S.H., Kim I. W., Kim S.-K. // Exp. Gerontol. 2012. V. 47. P. 979–987. https://doi.org/10.1016/j.exger.2012.09.003
  40. Niida A., Hiroko,T., Kasai M., Furukawa Y., Nakamura Y., Suzuki Y., Sugano S., Akiyama T. // Oncogene. 2004. V. 23. P. 8520–8526. https://doi.org/10.1038/sj.onc.1207892
  41. Qin P., Li X.-K., Yang H., Wang Z.-Y., Lu D.-X. // Molecules. 2019. V. 24. P. 2231. https://doi.org/10.3390/molecules24122231
  42. Li B., Hou Y., Zhu M., Bao H., Nie J., Zhang G.Y., Shan L., Yao Y., Du K., Yang H., Li M., Zheng B., Xu X., Xiao C., Du J. // Int. J. Neuropsychopharmacol. 2016. V. 19. P. 1–11. https://doi.org/10.1093/ijnp/pyv112
  43. Ahn Y.J., Park S.J., Lee S.G., Shi S.C., Choi D.H. // J. Agric. Food Chem. 2000. V. 48. P. 2744–2748. https://doi.org/10.1021/jf990862n
  44. Dong Y., Jing T., Meng Q., Liu C., Hu S., Ma Y., Liu Y., Lu J., Cheng Y., Wang D., Teng L. // Biomed. Res. Int. 2014, V. 2014. 160980. https://doi.org/10.1155/2014/160980
  45. Shin S., Lee S., Kwon J., Moon S., Lee C.K., Cho K., Ha N.J., Kim K. // Immune Netw. 2009. V. 9. P. 98–105. https://doi.org/10.4110/in.2009.9.3.98
  46. Yun Y.H., Han S.H., Lee S.J., Ko S.K., Lee C.K., Ha N.J., Kim K.J. // Nat. Prod. Sci. 2003. V. 9. P. 291–298.
  47. Lee H.J., Burger P., Vogel M., Friese K., Bruning A. // Investig. New Drugs. 2012. V. 30. P. 1917–1925. https://doi.org/10.1007/s10637-012-9859-x
  48. Lui J.C., Wong J.W., Suen Y.K., Kwok T.T., Fung K.P., Kong S.K. // Arch. Toxicol. 2007. V. 81. P. 859–865. https://doi.org/10.1007/s00204-007-0214-5
  49. Dalla Rosa, L. da Silva A.S., Gressler L.T., Oliveira C.B., Dambros M.G., Miletti L.C., Franca R.T., Lopes S.T., Samara Y.N., da Veiga M.L., Monteiro S. G. // Parasitology. 2013. V. 140. P. 663–671. https://doi.org/10.1017/S0031182012001990
  50. Hassan S. El Khadem, El Sayed H. El Ashry // Carbohydr. Research, 1973. V. 29, Issue 2. P. 525–527. https://doi.org/10.1016/S0008-6215(00)83043-8
  51. Tsai Y.J., Lin L.C., Tsai T.H. // J. Agric. Food Chem. 2010. V. 58. P. 4638–4643. https://doi.org/10.1021/jf100269g
  52. Dickinson M., Holly F. // J. Med. Chem. 1967. V. 275. P. 1165−1167. https://doi.org/10.1021/jm00318a042
  53. Gillerman I., Fischer B. // J. Med. Chem. 2011. V. 54. P. 107−121. https://doi.org/10.1021/jm101286g
  54. Vodnala S.K., Lundback T., Yeheskieli E., Sjoberg B., Gustavsson A.L., Svensson R., Olivera G.C., Eze A.A., de Koning H.P., Hammarstrom L.G., Rottenberg M.E. // J. Med. Chem. 2013. V. 56. P. 9861–9873. https://doi.org/10.1021/jm401530a
  55. Denisova A.O., Tokunova Y.A., Fateev I.V., Breslav A.A., Leonov V.N., Dorofeeva E.V., Lutonina O.I., Muzyka I. S., Esipov R.S., Kayushin A.L., Konstantinova I.D., Miroshnikov I.A., Stepchenko V.A., Mikhailopulo I.A. // Synthesis. 2017. V. 49. P. 4853–4860. https://doi.org/10.1055/s-0036-1590804
  56. Robins M.J., Wilson J.S., Madej D., Low N.H., Hansske F., Wnuk S.F. // J. Org. Chem. 1995. V. 60. P. 7902−7908. https://doi.org/10.1021/jo00129a034
  57. Berzin V. B., Dorofeeva E. V., Leonov V. N., Miroshnikov A. I. // Russ. J. Bioorg. Chem. 2009. P. 193– 196. https://doi.org/10.1134/s1068162009020071
  58. Hori N., Watanabe M., Sunagawa K., Uehara K., Mikami Y. // J. Biotechnol., 1991. V. 17. P. 121–131. https://doi.org/10.1016/0168-1656(91)90003-E
  59. Bzowska A., Kulikowska E., Shugar D. // Pharmacol. Ther., 2000. V. 88. P. 349–425. https://doi.org/10.1016/s0163-7258(00)00097-8
  60. Taran S.A., Verevkina K.N., Feofanov S.A., Miroshnikov A.I. // Russ. J. Bioorg. Chem. 2009. V. 35. P. 739–745. https://doi.org/10.1134/S1068162009060107
  61. Del Arco J., Fernández-Lucas J. // Appl. Microbiol. Biotechnol. 2018. V. 102. P. 7805–7820. https://doi.org/10.1007/s00253-018-9242-8
  62. Xu L., Li H.M., Lin J. // World J. Microbiol. Biotechnol. 2023. V. 39. P. 286. https://doi.org/10.1007/s11274-023-03721-1
  63. Zlatev I., Vasseur J.-J., Morvan F. // Tetrahedron Lett. 2008. V. 49. P. 3288–3290. https://doi.org/10.1016/j.tetlet.2008.03.079
  64. Fathi R., Jordan F. // J. Org. Chem. 1986. V. 51. P. 4143–4146. https://doi.org/10.1021/jo00372a008
  65. Esipov R.S., Gurevich A.I., Chuvikovsky D.V., Chupova L.A., Muravyova T.I., Miroshnikov A.I // Protein Expr. Purif. 2002. V. 24. P. 56–60. https://doi.org/10.1006/prep.2001.1524

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Adenosine, cordycepin and 2-fluorocordycepin.

Baixar (284KB)
3. Fig. 2. Scheme of the transglycosylation reaction of 2-F-Ado and 3-dIno in the synthesis of 2-fluorocordycepin.

Baixar (422KB)
4. Fig. 3. Scheme of synthesis of 2-F-3-dAdo, where (a) – α-acetoxyisobutyryl bromide/MeCN, (b) – H2/Pd, (c) – NH3, CH3OH.

Baixar (580KB)
5. Fig. 4. Scheme of the synthesis of compound (VI), where (a) – H2SO4, acetone, H2O, (b) – toluoyl chloride, pyridine, (c) – thiocarbonyldiimidazole, DMAP, MeCN, (d) – dimethyl phosphite, benzoyl peroxide, dioxane, (e) – acetic acid, water, (f) – acetyl bromide, acetic anhydride, dioxane, H3PO4, (g) – H3PO4, Bu3N, (h) – LiOH, H2O.

Baixar (995KB)
6. Rice. 5. Scheme for the synthesis of 2-F-3-dAdo.

Baixar (510KB)
7. Fig. 6. Dynamics of nucleoside (IV) accumulation depending on the ratio of 2-F-Ado to 1-P-3-dRib.

Baixar (626KB)
8. Fig. 7. Dependence of the conversion of 2-F-Ado into compound (IV) (168 h) on the pH value of potassium phosphate buffer.

Baixar (289KB)
9. Fig. 8. Dependence of the conversion of 2-F-Ado into compound (IV) (120 h) on the temperature of the reaction mixture.

Baixar (273KB)
10. Fig. 9. Dependence of the conversion of 2-F-Ado to compound (IV) (120 h) on the concentration of PNP.

Baixar (320KB)
11. Fig. 10. Dynamics of accumulation of 2-F-3-dAdo.

Baixar (268KB)
12. Fig. 11. Curves of the dependence of cell survival of different lines on the concentrations of 2-F-3-dAdo and 3-dAdo.

Baixar (2MB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025