Abstract
An analytical review of investigations dedicated to a behavior of tanks with compressed and liquefied hydrogen in a fire is presented. It was mentioned that the compressed hydrogen is stored as a rule in vessels made of composite materials, and the liquefied hydrogen is stored in double-wall isothermal tanks. The vessel with a compressed hydrogen is destructed after 5-15 min of an action of a fire, if no fire proofing is made for these vessels. A destruction of the vessel made of the composite materials takes place at gas pressures exceeding an initial pressure not more than on 10%. A rupture occurs due to a loss of polymer compound. A fire resistance limit of a such vessel is inversely proportional to an intensity of a thermal action of the fire. But the fire resistance limit of the liquefied hydrogen tank can reach several tens minutes depending on parameters of a thermal isolation. Shock waves, fireballs and fragments of the tanks are the main hazardous factors of the accidents with a rupture of the hydrogen tanks. Sizes of hazardous zones can reach several tens meters depending on the parameters of the tanks. The largest sizes were observed in the case of the fireballs.