Quasi-stationary approximation for analyzing the geminate and bimolecular stages of singlet fission in molecular semiconductors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work concerns the studying the accuracy of the quasi-static approximation for the calculation of the kinetics of singlet fission (SF) in molecular semiconductors. The SF is known to be accompanied by inverse TT-annihilation (TTA), which essentially controls the specific features of the SF-kinetics. The analysis of the SF-kinetics in the wide time region has been made, which covers both short times usually associated with the stage of geminate TTA and long times typical for the bimolecular TTA. The simple models have been proposed, analysis of which demonstrated good accuracy of formulas, derived within the quasistatic approximation, in the description of SF-kinetics. High accuracy of interpolation formulas, which combine the obtained expressions and allow for describing the kinetics at different stages of the process, is also demonstrated. The proposed formulas are shown to significantly simplify the description of the experimental results.

Full Text

Restricted Access

About the authors

A. I. Shushin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: shushin@chph.ras.ru
Russian Federation, Moscow

References

  1. K. Miyata, F. S. Conrad-Burton, F. L. Geyer et al. Chem. Rev. 119, 4261 (2019). https://doi.org/10.1021/acs.chemrev.8b00572
  2. D. Casanova, Chem. Rev. 118, 7164 (2018). https://doi.org/10.1021/acs.chemrev.7b00601
  3. M.B. Smith, J. Michl, Annu. Rev. Phys. Chem. 64, 361 (2013). https://doi.org/10.1146/annurev-physchem-040412-110130
  4. R.E. Merrifield. J. Chem. Phys. 48, 4318 (1968). https://doi.org/10.1063/1.1669777
  5. A. Suna, Phys. Rev. B. 1, 1716 (1970). https://doi.org/10.1103/PhysRevB.1.17166 .
  6. A.I. Shushin, J. Chem. Phys. 156, 074703 (2022). https://doi.org/10.1063/5.00781587
  7. D.G. Bossanyi, Y. Sasaki, S. Wang, D. Chekulaev, N. Kimizuka, N. Yanai, J. Clark, J. Mater. Chem. C. 10, 4684 (2022). https://doi.org/10.1039/d1tc02955j
  8. A.S. Vetchinkin, S.Ya. Umanskii, Ju.A. Chaikina et al. Russ. J. Phys. Chem. B. 16, 945 (2022). https://doi.org/10.1134/S19907931220501049
  9. A.I. Shushin, S.Y. Umanskii, Y.A. Chaikina. Russ. J. Phys. Chem. B. 17, 860 (2023). https://doi.org/10.1134/S1990793123040176
  10. A.I. Shushin, S.Y. Umanskii, Y. A. Chaikina. Russ. J. Phys. Chem. B. 17, 1403 (2023). https://doi.org/10.1134/S199079312306021011
  11. S.Y. Umanskii, S.O. Adamson, A.S. Vetchinkin et. al. // Russ. J. Phys. Chem. B. 17. 346 (2023). https://doi.org/10.1134/S199079312302032X
  12. A. Ryansnyanskiy, I. Biaggio. Phys. Rev. B. 84, 193203 (2011). https://doi.org/10.1103/PhysRevB.84.19320313
  13. T. Barhoumi, J.L. Monge, M. Mejatty et al. Eur. Phys. J. B. 59, 167 (2007).
  14. G.B. Piland, J.J. Burdett, D. Kurunthu et al. J. Phys. Chem. 117, 1224 (2013). https://doi.org/10.1021/jp309286v
  15. G.B. Pilland, J. Burdett, R.J. Dillon et al. J. Phys. Chem. Lett. 5, 2312 (2014). https://doi.org/10.1021/jz500676c
  16. A.I. Shushin. Chem. Phys. Lett. 118, 197 (1985). https://doi.org/10.1016/0009-2614(85)85297-017
  17. A.I. Shushin. J. Chem. Phys. 95, 3657 (1991). https://doi.org/10.1063/1.46081718
  18. A.I. Shushin. J. Chem. Phys. 97, 1954 (1992). https://doi.org/10.1063/1.46313219
  19. U.E. Steiner, T. Ulrich. Chem. Rev. 89, 514 (1989). https://doi.org/10.1021/cr00091a003
  20. A.I. Shushin. Chem. Phys. Lett. 678, 283 (2017). https://doi.org/10.1016/j.cplett.2017.04.068
  21. A.I. Shushin, J. Chem. Phys. 151, 034103 (2019). https://doi.org/10.1063/1.509966722
  22. A.I. Shushin. Chem. Phys. Lett. 811, 140199 (2023). https://doi.org/10.1016/j.cplett.2022.140199

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of the exact dependence of the kinetic SF function.

Download (28KB)
3. Fig. 2. Comparison of the experimental SF kinetics [7] (circles) measured in films containing rubrene nanoparticles with the full kinetic SF function y(t) calculated using the interpolation formula (24). The dashed line also shows the characteristic hemin kinetic function yg(t) calculated in neglecting T-exciton migration, i.e., for the above-mentioned diffusion model parameters, but with see Sects. 2 и 3).

Download (22KB)

Copyright (c) 2025 Russian Academy of Sciences