The effect of the metal binder content and mechanical activation on combustion in the (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al) system
- Authors: Kochetov N.А.1
-
Affiliations:
- Merzhanov Institute of Structural Macrokinetics and Materials Science, Rus.Ac.Sci.
- Issue: Vol 44, No 1 (2025)
- Pages: 52-62
- Section: Combustion, explosion and shock waves
- URL: https://rjmseer.com/0207-401X/article/view/683322
- DOI: https://doi.org/10.31857/S0207401X25010063
- ID: 683322
Cite item
Abstract
The paper investigates the effect of the content of the Fe + Co + Cr + Ni + Al metal binder and mechanical activation (MA) on the combustion rate, elongation of samples during synthesis, mixture yield and size of composite particles after MA, morphology and phase composition of combustion products and activated mixtures in the system (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al. In the process of MA mixtures, a multicomponent high–entropy alloy is formed – a solid solution based on γ-Fe with a HCC lattice (MHEA). A composite material consisting of ceramics and a high-entropy alloy was obtained by the method of self-propagating high-temperature synthesis (SHS). MA increases the maximum content of the metallic binder in the mixture, at which SHS is carried out at room temperature, from 60 to 80%. After MA, the elongation of the product samples and the combustion rate (in the case of a metal binder presence) of mixtures (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al) increases. For a mixture (Ti + 2B) + (Ti + C) without a binder, the combustion rate decreases after MA. With an increase in the content of the metal binder Fe + Co + Cr + Ni + Al in mixtures (Ti + 2B) + (Ti + C), the size of composite particles increases, the combustion rate, the yield of the activated mixture and the elongation of the samples of the reaction products of MA mixtures decreases. For the initial mixtures, the dependence of the elongation of the combustion product samples on the content of the binder is nonmonotonic, has a maximum.
Keywords
Full Text

About the authors
N. А. Kochetov
Merzhanov Institute of Structural Macrokinetics and Materials Science, Rus.Ac.Sci.
Author for correspondence.
Email: kolyan_kochetov@mail.ru
Russian Federation, Chernogolovka
References
- B. Basu, G.B. Raju, A.K. Suri. Int. Mater. Rev. 51 (6), 352 (2006). https://doi.org/10.1179/174328006X102529
- D. Vallauri, I.C. Atías Adrián, A. Chrysanthou. J. Eur. Ceram. Soc. 28 (8), 1697 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
- A.S. Rogachev, A.S. Mukasyan, Combustion for Material Synthesis. New York: CRC Press,Taylor & Francis Group, 2015.
- A.P. Hardt, and P.V. Phung, Combustion and Flame. 21 (1), 77 (1973).
- A.P. Hardt, R.W. Holsinger. Combustion and Flame 21 (1), 91 (1973).
- V.M. Shkiro, I.P. Borovinskaya. Investigation of the combustion patterns of titanium-carbon mixtures. In the “Combustion processes in chemical technology and metallurgy”. Chernogolovka, 1975. [in Russian].
- B.S. Seplyarskii, A.G. Tarasov, R.A. Kochetkov, Combust. Explos. Shock Waves. 49 (5), 555 (2013). https://doi.org/10.1134/S0010508213050079
- E.A. Levashov, Yu.V. Bogatov, & A.A. Milovidov, Combust. Explos. Shock Waves. 27 (1), 83 (1991). https://doi.org/10.1007/BF00785363
- B.S. Seplyarskii, S.G. Vadchenko, S.V. Kostin, G.B. Brauer. Combust. Explos. Shock Waves. 45 (1), 25 (2009). https://doi.org/10.1007/s10573-009-0004-x
- V.A. Knyazik, A.G. Merzhanov, V.B. Solomonov, A.S. Shteinberg. Combust. Explos. Shock Waves. 21 (3), 333 (1985). https://doi.org/10.1007/BF01463853
- N.A. Kochetov, B.S. Seplyarskii. Russ. J. Phys. Chem. B 14 (5), 791 (2020);
- M. A. Korchagin, T.F. Grigor’eva, B.B. Bokhonov et al. Combust. Explos. Shock Waves. 39 (1), 43 (2003). https://doi.org/10.1023/A:1022145201911
- N.A. Kochetov. Russ. J. Phys. Chem. B 16 (4), 621 (2022). https://doi.org/10.1134/S1990793122040078
- M.A. Korchagin. Combust. Explos. Shock Waves. 51 (5), 578 (2015). https://doi.org/10.1134/S0010508215050093
- N.A. Kochetov, B. S. Seplyarskii. Russ. J. Phys. Chem. B. 16 (1), 66 (2022). https://doi.org/10.1134/S1990793122010079 .
- M.A. Korchagin, V.Yu. Filimonov, E.V. Smirnov, N.Z. Lyakhov, Combust. Explos. Shock Waves. 46 (1), 41 (2010). https://doi.org/10.1007/s10573-010-0007-7
- N.A. Kochetov, B.S. Seplyarskii. Izv. vuzov. Poroshk. metallurgiya i funkts.pokrytiya. 3, 4 (2017) [in Russian]. https://doi.org/10.17073/1997-308X-2017-3-4-13
- B.V.V’yushkov, E.A. Levashov, A.G. Ermilov et al. Combust. Explos. Shock Waves. 30 (5), 630 (1994). https://doi.org/10.1007/BF00755828
- N.A. Kochetov, S.G. Vadchenko. Combust. Explos. Shock Waves. 51 (4), 467 (2015). https://doi.org/10.1134/S0010508215040103
- N.A. Kochetov. Combust. Explos. Shock Waves, 58 (2), 169 (2022). https://doi.org/10.1134/S0010508222020058
- B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent. Mater. Sci. and Eng.: A. 375-377, 213 (2004). https://doi.org/10.1016/j.msea.2003.10.257
- Y. Zhang, T.T. Zuo, Z. Tang et al. Prog. Mater. Sci. 61, 1 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001
- M.-H. Tsai, J.-W. Yeh. Mater. Res. Lett. 2 (3), 107 (2014). https://doi.org/10.1080/21663831.2014.912690
- H.-P. Chou, Y.-S. Chang, S.-K. Chen, J.-W. Yeh. Mater. Sci. Eng.: B. 163 (3), 184 (2009). https://doi.org/10.1016/j.mseb.2009.05.024
- A. Gali, E.P. George. Intermetallics. 39, 74 (2013). https://doi.org/10.1016/j.intermet.2013.03.018
- B. Gludovatz, A. Hohenwarter, D. Catoor et al. Science. 345 (6201), 1153 (2014). https://doi.org/https://doi.org/10.1126/science.1254581
- A. Kilmametov, R. Kulagin, A. Mazilkin et al. Scr. Mater. 158, 29 (2019). https://doi.org/10.1016/j.scriptamat.2018.08.031
- H. Shahmir, J. He, Z. Lu et al. Mater. Sci. Eng. A. 685 (8), 342 (2017). https://doi.org/10.1016/j.msea.2017.01.016
- J. Gu, S. Ni, Y. Liu, M. Song. Mater. Sci. Eng. A. 755, 289 (2019). https://doi.org/10.1016/j.msea.2019.04.025
- P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid et al. J. Alloys Compd. 587, 544 (2014). https://doi.org/10.1016/j.jallcom.2013.10.237
- J.-W. Yeh, Y.-L. Chen, S.-J. Lin, S.-K. Chen. Mater. Sci. Forum. 560, 1 (2007). https://doi.org/10.4028/www.scientific.net/MSF.560.1
- N. A. Kochetov, A. S. Rogachev, A. S. Shchukin et al. Russ. J. Non-Ferr. Metals, 60 (3), 268 (2019). https://doi.org/10.3103/S106782121903009X
- A.S. Rogachev, S.G. Vadchenko, N.A. Kochetov et al. J. Alloys Compd. 805, 1237 (2019). https://doi.org/10.1016/j.jallcom.2019.07.195
- A.S. Rogachev, S.G. Vadchenko, N.A. Kochetov et al. J. Europ. Ceram. Soc. 40, 2527 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.059
- A.S. Rogachev, A.N. Gryadunov, N.A. Kochetov, et al., Int. J. Self-Propag. High-Temp. Synth. 28 (3), 196 (2019). https://doi.org/10.3103/S1061386219030117
- A. Rajabi, M. J. Ghazali, J. Syarif, A.R. Daud. Chem. Eng. J. 255, 445 (2014). https://doi.org/10.1016/j.cej.2014.06.078
- A. Rajabi, M. J. Ghazali, A. R. Daud. Mater. Des. 67, 95 (2015). https://doi.org/10.1016/j.matdes.2014.10.081
- Y. Peng, H. Miao, Z. Peng. Int. J. Refract. Met. H. Mater. 39, 78 (2013). https://doi.org/10.1016/j.ijrmhm.2012.07.001
- S. Zhang, Y. Sun, B. Ke et al. Metals. 8 (1:58), 1 (2018). https://doi.org/10.3390/met8010058
- Z. Fu, R. Koc. Mater. Sci. Eng. A. 702, 184 (2017). https://doi.org/10.1016/j.msea.2017.07.008 .
- Z. Fu, R. Koc. Mater. Sci. Eng. A. 735, 302 (2018). https://doi.org/10.1016/j.msea.2018.08.058 .
- A.G. de la Obra, M.A. Avilés, Y. Torres et al. Int. J. Refract. Met. H. Mater. 63, 17 (2017). https://doi.org/10.1016/j.ijrmhm.2016.04.011 .
- S.G. Vadchenko. Int. J. Self-Propag. High-Temp. Synth. 25 (4), 210 (2016). https://doi.org/10.3103/S1061386216040105
- S.G. Vadchenko. Int. J. Self-Propag. High-Temp. Synth. 24 (2), 90 (2015). https://doi.org/10.3103/S1061386215020107
- B.S. Seplyarskii. Dokl. Phys. Chem. 396 (4–6), 130 (2004).
- B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, D.S. Vasiliev. Combustion, Explosion, and Shock Waves. 59 (3), 344 (2023). https://doi.org/10.1134/S0010508223030097
- B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina et al. Russ. J. Phys. Chem. B. 17 (5), 1098 (2023). https://doi.org/10.1134/S199079312305010X .
- B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, N.I. Abzalov. Russ. J. Phys. Chem. A. 97 (3), 525 (2023). https://doi.org/10.1134/S003602442303024X
- B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina et al. Int. J Self-Propag. High-Temp. Synth. 31, 195 (2022). https://doi.org/10.3103/S1061386222040100
- B.S. Seplyarskii, N.I. Abzalov, R.A. Kochetkov, T.G. Lisina. Russ. J. Phys. Chem. B., 15 (2), 242 (2021). https://doi.org/10.1134/S199079312102010X
- O.K. Kamynina, A.S. Rogachev, A.E. Sytschev et al. Int. J. Self-Propag. High-Temp. Synth. 13 (3), 193 (2004).
- O.K. Kamynina, A.S. Rogachev, L.M. Umarov et al. Combust. Explos. Shock Waves, 39 (5), 548 (2003). https://doi.org/10.1023/A:1026161818701
- N.A. Kochetov, B.S. Seplyarskii. Sample Elongation in Combustion // Russ. J. Phys. Chem. B. 12 (5), 883 (2018). https://doi.org/10.1134/S1990793118050172
Supplementary files
