The effect of the metal binder content and mechanical activation on combustion in the (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al) system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper investigates the effect of the content of the Fe + Co + Cr + Ni + Al metal binder and mechanical activation (MA) on the combustion rate, elongation of samples during synthesis, mixture yield and size of composite particles after MA, morphology and phase composition of combustion products and activated mixtures in the system (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al. In the process of MA mixtures, a multicomponent high–entropy alloy is formed – a solid solution based on γ-Fe with a HCC lattice (MHEA). A composite material consisting of ceramics and a high-entropy alloy was obtained by the method of self-propagating high-temperature synthesis (SHS). MA increases the maximum content of the metallic binder in the mixture, at which SHS is carried out at room temperature, from 60 to 80%. After MA, the elongation of the product samples and the combustion rate (in the case of a metal binder presence) of mixtures (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al) increases. For a mixture (Ti + 2B) + (Ti + C) without a binder, the combustion rate decreases after MA. With an increase in the content of the metal binder Fe + Co + Cr + Ni + Al in mixtures (Ti + 2B) + (Ti + C), the size of composite particles increases, the combustion rate, the yield of the activated mixture and the elongation of the samples of the reaction products of MA mixtures decreases. For the initial mixtures, the dependence of the elongation of the combustion product samples on the content of the binder is nonmonotonic, has a maximum.

Full Text

Restricted Access

About the authors

N. А. Kochetov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Rus.Ac.Sci.

Author for correspondence.
Email: kolyan_kochetov@mail.ru
Russian Federation, Chernogolovka

References

  1. B. Basu, G.B. Raju, A.K. Suri. Int. Mater. Rev. 51 (6), 352 (2006). https://doi.org/10.1179/174328006X102529
  2. D. Vallauri, I.C. Atías Adrián, A. Chrysanthou. J. Eur. Ceram. Soc. 28 (8), 1697 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
  3. A.S. Rogachev, A.S. Mukasyan, Combustion for Material Synthesis. New York: CRC Press,Taylor & Francis Group, 2015.
  4. A.P. Hardt, and P.V. Phung, Combustion and Flame. 21 (1), 77 (1973).
  5. A.P. Hardt, R.W. Holsinger. Combustion and Flame 21 (1), 91 (1973).
  6. V.M. Shkiro, I.P. Borovinskaya. Investigation of the combustion patterns of titanium-carbon mixtures. In the “Combustion processes in chemical technology and metallurgy”. Chernogolovka, 1975. [in Russian].
  7. B.S. Seplyarskii, A.G. Tarasov, R.A. Kochetkov, Combust. Explos. Shock Waves. 49 (5), 555 (2013). https://doi.org/10.1134/S0010508213050079
  8. E.A. Levashov, Yu.V. Bogatov, & A.A. Milovidov, Combust. Explos. Shock Waves. 27 (1), 83 (1991). https://doi.org/10.1007/BF00785363
  9. B.S. Seplyarskii, S.G. Vadchenko, S.V. Kostin, G.B. Brauer. Combust. Explos. Shock Waves. 45 (1), 25 (2009). https://doi.org/10.1007/s10573-009-0004-x
  10. V.A. Knyazik, A.G. Merzhanov, V.B. Solomonov, A.S. Shteinberg. Combust. Explos. Shock Waves. 21 (3), 333 (1985). https://doi.org/10.1007/BF01463853
  11. N.A. Kochetov, B.S. Seplyarskii. Russ. J. Phys. Chem. B 14 (5), 791 (2020);
  12. M. A. Korchagin, T.F. Grigor’eva, B.B. Bokhonov et al. Combust. Explos. Shock Waves. 39 (1), 43 (2003). https://doi.org/10.1023/A:1022145201911
  13. N.A. Kochetov. Russ. J. Phys. Chem. B 16 (4), 621 (2022). https://doi.org/10.1134/S1990793122040078
  14. M.A. Korchagin. Combust. Explos. Shock Waves. 51 (5), 578 (2015). https://doi.org/10.1134/S0010508215050093
  15. N.A. Kochetov, B. S. Seplyarskii. Russ. J. Phys. Chem. B. 16 (1), 66 (2022). https://doi.org/10.1134/S1990793122010079 .
  16. M.A. Korchagin, V.Yu. Filimonov, E.V. Smirnov, N.Z. Lyakhov, Combust. Explos. Shock Waves. 46 (1), 41 (2010). https://doi.org/10.1007/s10573-010-0007-7
  17. N.A. Kochetov, B.S. Seplyarskii. Izv. vuzov. Poroshk. metallurgiya i funkts.pokrytiya. 3, 4 (2017) [in Russian]. https://doi.org/10.17073/1997-308X-2017-3-4-13
  18. B.V.V’yushkov, E.A. Levashov, A.G. Ermilov et al. Combust. Explos. Shock Waves. 30 (5), 630 (1994). https://doi.org/10.1007/BF00755828
  19. N.A. Kochetov, S.G. Vadchenko. Combust. Explos. Shock Waves. 51 (4), 467 (2015). https://doi.org/10.1134/S0010508215040103
  20. N.A. Kochetov. Combust. Explos. Shock Waves, 58 (2), 169 (2022). https://doi.org/10.1134/S0010508222020058
  21. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent. Mater. Sci. and Eng.: A. 375-377, 213 (2004). https://doi.org/10.1016/j.msea.2003.10.257
  22. Y. Zhang, T.T. Zuo, Z. Tang et al. Prog. Mater. Sci. 61, 1 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001
  23. M.-H. Tsai, J.-W. Yeh. Mater. Res. Lett. 2 (3), 107 (2014). https://doi.org/10.1080/21663831.2014.912690
  24. H.-P. Chou, Y.-S. Chang, S.-K. Chen, J.-W. Yeh. Mater. Sci. Eng.: B. 163 (3), 184 (2009). https://doi.org/10.1016/j.mseb.2009.05.024
  25. A. Gali, E.P. George. Intermetallics. 39, 74 (2013). https://doi.org/10.1016/j.intermet.2013.03.018
  26. B. Gludovatz, A. Hohenwarter, D. Catoor et al. Science. 345 (6201), 1153 (2014). https://doi.org/https://doi.org/10.1126/science.1254581
  27. A. Kilmametov, R. Kulagin, A. Mazilkin et al. Scr. Mater. 158, 29 (2019). https://doi.org/10.1016/j.scriptamat.2018.08.031
  28. H. Shahmir, J. He, Z. Lu et al. Mater. Sci. Eng. A. 685 (8), 342 (2017). https://doi.org/10.1016/j.msea.2017.01.016
  29. J. Gu, S. Ni, Y. Liu, M. Song. Mater. Sci. Eng. A. 755, 289 (2019). https://doi.org/10.1016/j.msea.2019.04.025
  30. P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid et al. J. Alloys Compd. 587, 544 (2014). https://doi.org/10.1016/j.jallcom.2013.10.237
  31. J.-W. Yeh, Y.-L. Chen, S.-J. Lin, S.-K. Chen. Mater. Sci. Forum. 560, 1 (2007). https://doi.org/10.4028/www.scientific.net/MSF.560.1
  32. N. A. Kochetov, A. S. Rogachev, A. S. Shchukin et al. Russ. J. Non-Ferr. Metals, 60 (3), 268 (2019). https://doi.org/10.3103/S106782121903009X
  33. A.S. Rogachev, S.G. Vadchenko, N.A. Kochetov et al. J. Alloys Compd. 805, 1237 (2019). https://doi.org/10.1016/j.jallcom.2019.07.195
  34. A.S. Rogachev, S.G. Vadchenko, N.A. Kochetov et al. J. Europ. Ceram. Soc. 40, 2527 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.059
  35. A.S. Rogachev, A.N. Gryadunov, N.A. Kochetov, et al., Int. J. Self-Propag. High-Temp. Synth. 28 (3), 196 (2019). https://doi.org/10.3103/S1061386219030117
  36. A. Rajabi, M. J. Ghazali, J. Syarif, A.R. Daud. Chem. Eng. J. 255, 445 (2014). https://doi.org/10.1016/j.cej.2014.06.078
  37. A. Rajabi, M. J. Ghazali, A. R. Daud. Mater. Des. 67, 95 (2015). https://doi.org/10.1016/j.matdes.2014.10.081
  38. Y. Peng, H. Miao, Z. Peng. Int. J. Refract. Met. H. Mater. 39, 78 (2013). https://doi.org/10.1016/j.ijrmhm.2012.07.001
  39. S. Zhang, Y. Sun, B. Ke et al. Metals. 8 (1:58), 1 (2018). https://doi.org/10.3390/met8010058
  40. Z. Fu, R. Koc. Mater. Sci. Eng. A. 702, 184 (2017). https://doi.org/10.1016/j.msea.2017.07.008 .
  41. Z. Fu, R. Koc. Mater. Sci. Eng. A. 735, 302 (2018). https://doi.org/10.1016/j.msea.2018.08.058 .
  42. A.G. de la Obra, M.A. Avilés, Y. Torres et al. Int. J. Refract. Met. H. Mater. 63, 17 (2017). https://doi.org/10.1016/j.ijrmhm.2016.04.011 .
  43. S.G. Vadchenko. Int. J. Self-Propag. High-Temp. Synth. 25 (4), 210 (2016). https://doi.org/10.3103/S1061386216040105
  44. S.G. Vadchenko. Int. J. Self-Propag. High-Temp. Synth. 24 (2), 90 (2015). https://doi.org/10.3103/S1061386215020107
  45. B.S. Seplyarskii. Dokl. Phys. Chem. 396 (4–6), 130 (2004).
  46. B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, D.S. Vasiliev. Combustion, Explosion, and Shock Waves. 59 (3), 344 (2023). https://doi.org/10.1134/S0010508223030097
  47. B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina et al. Russ. J. Phys. Chem. B. 17 (5), 1098 (2023). https://doi.org/10.1134/S199079312305010X .
  48. B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina, N.I. Abzalov. Russ. J. Phys. Chem. A. 97 (3), 525 (2023). https://doi.org/10.1134/S003602442303024X
  49. B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina et al. Int. J Self-Propag. High-Temp. Synth. 31, 195 (2022). https://doi.org/10.3103/S1061386222040100
  50. B.S. Seplyarskii, N.I. Abzalov, R.A. Kochetkov, T.G. Lisina. Russ. J. Phys. Chem. B., 15 (2), 242 (2021). https://doi.org/10.1134/S199079312102010X
  51. O.K. Kamynina, A.S. Rogachev, A.E. Sytschev et al. Int. J. Self-Propag. High-Temp. Synth. 13 (3), 193 (2004).
  52. O.K. Kamynina, A.S. Rogachev, L.M. Umarov et al. Combust. Explos. Shock Waves, 39 (5), 548 (2003). https://doi.org/10.1023/A:1026161818701
  53. N.A. Kochetov, B.S. Seplyarskii. Sample Elongation in Combustion // Russ. J. Phys. Chem. B. 12 (5), 883 (2018). https://doi.org/10.1134/S1990793118050172

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. XRD results of activated mixtures (Ti + 2B) + (Ti + C) + x(5Me), where x = 30 and 60 wt.%. Numbers indicate the reflections of the following phases: 1 - Ti, 2 - HCC phase (HPP).

Download (87KB)
3. Fig. 2. Dependence of the activated mixture yield on the content of metallic bond x in the mixture 60%(Ti + + 2B) + 40%(Ti + C) + x(5Me).

Download (27KB)
4. Fig. 3. Dependence of the average particle size of the activated mixture 60%(Ti+2B)+ 40%(Ti+C)+x(5Me) on the metal bond content x.

Download (23KB)
5. Fig. 4. Dependence of pressure used to press samples from MA mixture 60%(Ti + 2B) + + 40%(Ti + C) + x(5Me) on the metal bond content in x.

Download (25KB)
6. Fig. 5. Dependence of the combustion rate of the samples on the content of metal binder: ■ - in the initial mixture 60%(Ti+2B)+ 40%(Ti+C)+x(5Me), - activated mixture 60%(Ti+2B)+ 40%(Ti+C)+x(5Me).

Download (28KB)
7. Fig. 6. Photograph of samples of combustion products of activated mixtures 60%(Ti+2B)+ 40%(Ti+C)+x(5Me), at the following values of x: 1 - 0, 2 - 10, 3 - 20, 4 - 30, 5 - 40, 6 - 50, 7 - 60, 8 - 70, 9 - 80 wt.%.

Download (308KB)
8. Fig. 7. XRD results of combustion products: a - initial mixtures, b - activated mixtures 60%(Ti + 2B) + + 40%(Ti + C) + x(5Me). At x = 10 and 50 wt.% for the initial and x = 20, 60 and 80 wt.% for the activated mixtures. Numbers indicate the reflections of the following phases: 1 - TiC, 2 - TiB2, 3 - HCC phase (HPP), 4 - OCC phase (HPP).

Download (107KB)
9. Fig. 8. Dependence of the relative change in sample length on the metal bond content: ■ - in the initial, mixture of 60%(Ti + 2B) + + + 40%(Ti + C) + x(5Me).

Download (24KB)
10. Fig. 9. Photograph of combustion product samples of the initial mixtures 60%(Ti+2B)+ 40%(Ti+C) + x(5Me) at the following x values: 1 - 0, 2 - 10, 3 - 20, 4 - 30, 5 - 40, 6 - 50, 7 - 60 wt. %.

Download (178KB)

Copyright (c) 2025 Russian Academy of Sciences