Fluorescent Photoswitchable Systems
- Authors: Budyka М.F.1
-
Affiliations:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- Issue: Vol 44, No 6 (2025)
- Pages: 3-29
- Section: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://rjmseer.com/0207-401X/article/view/686497
- DOI: https://doi.org/10.31857/S0207401X25060018
- ID: 686497
Cite item
Abstract
Fluorescent photoswitchable systems (FPSS) are organic molecular and organic-inorganic hybrid nanoscale systems that combine the properties of photochromes and fluorophores, i.e. the ability to change their fluorescent properties, intensity and/or emission spectrum under the action of light. The structure and mechanisms of action of FPSS of different types are considered, examples of application of FPSS in super-resolution microscopy, for visualisation of biological and inorganic nano-objects, recording of optical information, for anti-counterfeiting, as photonic molecular logic gates are given.
Full Text

About the authors
М. F. Budyka
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: budyka@icp.ac.ru
Russian Federation, Chernogolovka
References
- Bouas-Laurent H., Dürr H. // Org. Photochrom., Pure Appl. Chem. 2001. V. 73. P. 639. https://doi.org/10.1351/pac200173040639
- Molecular Photoswitches: Chemistry, Properties, and Applications / Ed. Pianowski Z.L. Wiley-VCH GmbH, 2022. https://doi.org/10.1002/9783527827626
- Braslavsky S.E. // Pure Appl. Chem. 2007. V. 79. P. 293. https://doi.org/10.1351/pac200779030293
- Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. N.Y.: Springer, 2006. https://doi.org/10.1007/978-0-387-46312-4
- Parthenopoulos D.A., Rentzepis P.M. // Science. 1989. V. 245. P. 843. https://doi.org/10.1126/science.245.4920.843
- Fukaminato T., Doi T., Tamaoki N. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 4984. https://doi.org/10.1021/ja110686t
- Dvornikov A.S., Walker P., Rentzepis P.M. // J. Phys. Chem. A. 2009. V. 113. P. 13633. https://doi.org/10.1021/jp905655z
- Shirinyan V.Z., Lonshakov D.V., Lvov A.G., Krayushkin M.M. // Uspekhi Khimii. 2013. V. 82. P. 511. https://doi.org/10.1070/RC2013v082n06ABEH004339
- Olesinska-Monch M., Deo C. // Chem. Commun. 2023. V. 59. P. 660. https://doi.org/10.1039/d2cc05870g
- Nevskyi O., Sysoiev D., Dreier J. et al. // Small. 2018. V. 14. P. 1703333. https://doi.org/10.1002/smll.201703333
- Biteen J., Willets K.A. // Chem. Rev. 2017. V. 117. P. 7241. https://doi.org/10.1021/acs.chemrev.7b00242
- Chen T., Dong B., Chen K. et al. // Ibid. P. 7510. https://doi.org/10.1021/acs.chemrev.6b00673
- Irie M., Fukaminato T., Matsuda K., Kobatake S. // Ibid. 2014. V. 114. P. 12174. https://doi.org/10.1021/cr500249p
- Kim D., Park S.Y. // Adv. Optical Mater. 2018. P. 1800678. https://doi.org/10.1002/adom.201800678
- Budyka M.F. // Uspekhi Khimii. 2017. V. 86. P. 181. https://doi.org/10.1070/RCR4657
- Erbas-Cakmak S., Kolemen S., Sedgwick A.C. et al. // Chem. Soc. Rev. 2018. V. 47. P. 2228. https://doi.org/10.1039/c7cs00491e
- Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. P. 213695. https://doi.org/10.1016/j.ccr.2020.213695
- Mockl L., Lamb D.C., Brauchle C. // Angew. Chem. Int. Ed. 2014. V. 53. P. 13972. https://doi.org/10.1002/anie.201410265
- Blom H., Widengren J. // Chem. Rev. 2017. V. 117. P. 7377. https://doi.org/10.1021/acs.chemrev.6b00653
- von Diezmann L., Shechtman Y., Moerner W.E. // Ibid. P. 7244. https://doi.org/10.1021/acs.chemrev.6b00629
- Deschout H., Lukes T., Sharipov A. et al. // Nat. Commun. 2016. V. 7. P. 13693. https://doi.org/10.1038/ncomms13693
- Prakash K., Diederich B., Heintzmann R., Schermelleh L. // Phil. Trans. R. Soc. A. 2022. V. 380. P. 20210110. https://doi.org/10.1098/rsta.2021.0110
- Balzarotti F., Eilers Y., Gwosch K.C. et al. // Science. 2017. V. 355. P. 606. https://doi.org/10.1126/science.aak9913
- Schmidt R., Weihs T., Wurm C.A. et al. // Nat. Commun. 2021. V. 12. P. 1478. https://doi.org/10.1038/s41467-021-21652-z
- Hauser M., Wojcik M., Kim D. et al. // Chem. Rev. 2017. V. 117. P. 7428. https://doi.org/10.1021/acs.chemrev.6b00604
- Roubinet B., Weber M., Shojaei H. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 6611. https://doi.org/10.1021/jacs.7b00274
- Irie M., Morimoto M. // Bull. Chem. Soc. Jpn. 2018. V. 91. P. 237. https://doi.org/10.1246/bcsj.20170365
- Wu Y., Zhu Y., Yao C. et al. // J. Mater. Chem. C. 2023. V. 11. P. 15393. https://doi.org/10.1039/d3tc02383d
- Heilemann M., Dedecker P., Hofkens J., Sauer M. // Laser Photo. Rev. 2009. V. 3. P. 180. https://doi.org/10.1002/lpor.200810043
- Fukaminato T., Ishida S., Metivier R. // NPG Asia Mater. 2018. V. 10. P. 859. https://doi.org/10.1038/s41427-018-0075-9
- Zhong W., Shang L. // Chem. Sci. 2024. V. 15. P. 6218. https://doi.org/10.1039/d4sc00114a
- Huang F., Anslyn E.V. // Chem. Rev. 2015. V. 115. P. 6999. https://doi.org/10.1021/acs.chemrev.5b00352
- Furstenberg A., Heilemann M. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 14919. https://doi.org/10.1039/c3cp52289j
- Kortekaas L., Browne W.R. // Chem. Soc. Rev. 2019. V. 48. P. 3406.https://doi.org/10.1039/c9cs00203k
- Hu D., Tian Z., Wu W., Wan W., Li A.D.Q. // J. Am. Chem. Soc. 2008. V. 130. P. 15279. https://doi.org/10.1021/ja805948u
- Mandal M., Banik D., Karak A., Manna S.K., Mahapatra A.K. // ACS Omega. 2022. V. 7. P. 36988. https://doi.org/10.1021/acsomega.2c04969
- Irie M. // Chem. Rev. 2000. V. 100. P. 1685. https://doi.org/10.1021/cr980069d
- Lvov A.G., Khusniyarov M.M., Shirinian V.Z. // J. Photochem. Photobiol. C: Photochem. Rev. 2018. V. 36. P. 1. https://doi.org/10.1016/j.jphotochemrev.2018.04.002
- Matsuda K., Irie M. // J. Photochem. Photobiol., C. 2004. V. 5. P. 169. https://doi.org/10.1016/j.jphotochemrev.2004.07.003
- Li Z., Zeng X., Gao C. et al. // Coord. Chem. Rev. 2023. V. 497. P. 215451. https://doi.org/10.1016/j.ccr.2023.215451
- Fukaminato T. // J. Photochem. Photobiol., C. 2011. V. 12. P. 177. https://doi.org/10.1016/j.jphotochemrev.2011.08.006
- Pang S.C., Hyun H., Lee S. et al. // Chem. Commun. 2012. V. 48. P. 3745. https://doi.org/10.1039/C2CC30738C
- Jeong Y.-C., Yang S.I., Ahn K.-H., Kim E. // Ibid. 2005. P. 2503. https://doi.org/10.1039/B501324K
- Jeong Y.-C., Yang S.I., Kim E., Ahn K.-H. // Tetrahedron. 2006. V. 62. P. 5855. https://doi.org/10.1016/j.tet.2006.04.029
- Jeong Y.-C., Park D.G., Lee I.S., Yang S.I., Ahn K.-H. // J. Mater. Chem. 2009. V. 19. P. 97. https://doi.org/10.1039/b814040e
- Taguchi M., Nakagawa T., Nakashima T., Kawai T. // Ibid. 2011. V. 21. P. 17425. https://doi.org/10.1039/c1jm12993g
- Kashihara R., Morimoto M., Ito S., Miyasaka H., Irie M. // J. Am. Chem. Soc. 2017. V. 139. P. 16498. https://doi.org/10.1021/jacs.7b10697
- Takagi Y., Morimoto M., Kashihara R. et al. // Tetrahedron. 2017. V. 73. P. 4918. https://doi.org/10.1016/j.tet.2017.03.040
- Nevskyi O., Sysoiev D., Oppermann A., Huhn T., Woll D. // Angew. Chem. Int. Ed. 2016. V. 55. P. 12698. https://doi.org/10.1002/anie.201606791
- Roubinet B., Bossi M.L., Alt P. et al. // Ibid. P. 15429. https://doi.org/10.1002/anie.201607940
- Uno K., Bossi M.L., Belov V.N., Irie M., Hell S.W. // Chem. Commun. 2020. V. 56. P. 2198. https://doi.org/10.1039/c9cc09390g
- Nakagawa T., Miyasaka Y., Yokoyama Y. // Ibid. 2018. V. 54. P. 3207. https://doi.org/10.1039/c8cc00566d
- Andresen M., Wahl M.C., Stiel A.C. et al. // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 13070. https://doi.org/10.1073/pnas.0502772102
- Grotjohann T., Testa I., Reuss M. et al. // eLife. 2012. V. 1. e00248. https://doi.org/10.7554/eLife.00248
- Grotjohann T., Testa I., Leutenegger M. et al. // Nature. 2011. V. 478. P. 204. https://doi.org/10.1038/nature10497
- Liu G., Leng J., Zhou Q. et al. // Dyes Pigm. 2022. V. 203. P. 110361. https://doi.org/10.1016/j.dyepig.2022.110361
- Budyka M.F., Potashova N.I., Gavrishova T.N., Li V.M. // Russ. Nanotechnol. 2012. V. 7. No. 5–6. P. 89. https://doi.org/10.1134/S1995078012030032
- de Silva A.P., Uchiyama S. // Nat. Nanotechnol. 2007. V. 2. P. 399. https://doi.org/10.1038/nnano.2007.188
- Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481. https://doi.org/10.1021/cr068403q
- Budyka M.F., Potashova N.I., Gavrishova T.N., Li V.M. // High Energy Chem. 2012. V. 46. P. 369. https://doi.org/10.1134/S0018143912040054
- Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Ushakov E.N. // ChemistrySelect. 2021. V. 6. P. 3218. https://doi.org/10.1002/slct.202004721
- Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Fedulova J.A. // Spectrochim. Acta, Part A. 2022. V. 267. P. 120565. https://doi.org/10.1016/j.saa.2021.120565
- Budyka M.F., Fedulova J.A., Gavrishova T.N. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137. https://doi.org/10.1039/d2cp02865d
- Budyka M.F., Gavrishova T.N., Li V.M., Tovstun S.A. // Spectrochim. Acta, Part A. 2024. V. 320. P. 124666. https://doi.org/10.1016/j.saa.2024.124666
- Budyka M.F., Li V.M., Gavrishova T.N. // High Energy Chem. 2025. V. 59. P. 22. https://doi.org/10.1134/S0018143924701431
- Budyka M.F. // High Energy Chem. 2007. V. 41. P. 213. https://doi.org/10.1134/S0018143907030058
- Lord S.J., Conley N.R., Lee H.D. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 9204. https://doi.org/10.1021/ja802883k
- Homan R.A., Lapek J.D., Woo C.M. et al. // Nat. Rev. Methods Primers. 2024. V. 4. P. 30. https://doi.org/10.1038/s43586-024-00308-4
- Lord S.J., Lee H.D., Samuel R. et al. // J. Phys. Chem. B. 2010. V. 114. P. 14157. https://doi.org/10.1021/jp907080r
- Belov V.N., Wurm C.A., Boyarskiy V.P., Jakobs S., Hell S.W. // Angew. Chem. Int. Ed. 2010. V. 49. P. 3520. https://doi.org/10.1002/anie.201000150
- Hauke S., von Appen A., Quidwai T., Ries J., Wombacher R. // Chem. Sci. 2017. V. 8. P. 559. https://doi.org/10.1039/c6sc02088g
- Maurel D., Banala S., Laroche T., Johnsson K. // ACS Chem. Biol. 2010. V. 5. P. 507. https://doi.org/10.1021/cb1000229
- Gong Q., Zhang X., Li W. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 21992. https://doi.org/10.1021/jacs.2c08947
- Lincoln R., Bossi M.L., Remmel M. et al. // Nat. Chem. 2022. V. 14. P. 1013. https://doi.org/10.1038/s41557-022-00995-0
- Vaughan J.C., Jia S., Zhuang X.W. // Nat. Methods. 2012. V. 9. P. 1181. https://doi.org/10.1038/nmeth.2214
- Go G., Jeong U., Park H., Go S., Kim D. // Angew. Chem. Int. Ed. 2024. V. 63. P. e202405246. https://doi.org/10.1002/anie.202405246
- Efros A.L., Nesbitt D.J. // Nat. Nanotechn. 2016. V. 11. P. 661. https://doi.org/10.1038/nnano.2016.140
- Shi J., Sun W., Utzat H. et al. // Ibid. 2021. V. 16. P. 1355. https://doi.org/10.1038/s41565-021-01016-w
- Du J., Yang Z., Lin H., Poelman D. // Respons. Mater. 2024. V. 2. P. e20240004. https://doi.org/10.1002/rpm.20240004
- Knibbe H., Rehm D., Weller A. // Ber. Bunsen-Ges. Phys. Chem. 1969. V. 73. P. 839. https://doi.org/10.1002/bbpc.19690730819
- Fukaminato T., Tanaka M., Doi T. et al. // Photochem. Photobiol. Sci. 2010. V. 9. P. 181. https://doi.org/10.1039/b9pp00131j
- Braslavsky S.E., Fron E., Rodriguez H.B. et al. // Ibid. 2008. V. 7. P. 1444. https://doi.org/10.1039/b810620g
- Irie M., Fukaminato T., Sasaki T., Tamai N., Kawai T. // Nature. 2002. V. 420. P. 759. https://doi.org/10.1038/420759a
- Fukaminato T., Sasaki T., Kawai T., Tamai N., Irie M. // J. Am. Chem. Soc. 2004. V. 126. P. 14843. https://doi.org/10.1021/ja047169n
- Galimov D.I., Tuktarov A.R., Sabirov D.Sh., Khuzin A.A., Dzhemilev U.M. // J. Photochem. Photobiol. A. 2019. V. 375. P. 64. https://doi.org/10.1016/j.jphotochem.2019.02.017
- Jeong J., Yun E., Choi Y. et al. // Chem. Commun. 2011. V. 47. P. 10668. https://doi.org/10.1039/c1cc14041h
- Budyka M.F. // Org. Photonics Photovolt. 2015. V. 3. P. 101. https://doi.org/10.1515/oph-2015-0001
- Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173. https://doi.org/10.1021/ar200214k
- Ordronneau L., Aubert V., Metivier R. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 2599. https://doi.org/10.1039/c2cp23333a
- Ordronneau L., Boixel J., Aubert V. et al. // Org. Biomol. Chem. 2014. V. 12. P. 979. https://doi.org/10.1039/c3ob42119h
- Budyka M.F., Li V.M. // ChemPhysChem. 2017. V. 18. P. 260. https://doi.org/10.1002/cphc.201600722
- Budyka M.F., Lee V.M., Gavrishova T.N. // J. Photochem. Photobiol. A. 2014. V. 279. P. 59. https://doi.org/10.1016/j.jphotochem.2014.01.004
- Balzani V., Cola L., Prodi L., Scandola F. // Pure Appl. Chem. 1990. V. 62. P. 1457. https://doi.org/10.1351/pac199062081457
- Zhu F., Hou X.-F., Wang J. et al. // Asian J. Org. Chem. 2024. P. e202400385. https://doi.org/10.1002/ajoc.202400385
- Andréasson J., Straight S.D., Kodis G. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 16259. https://doi.org/10.1021/ja0654579
- Andreasson J., Pischel U., Straight S.D. et al. // Ibid. 2011. V. 133. P. 11641. https://doi.org/10.1021/ja203456h
- Andreasson J., Straight S.D., Bandyopadhyay S. et al. // Angew. Chem. Int. Ed. 2007. V. 46. P. 958. https://doi.org/10.1002/anie.200603856
- Andreasson J., Straight S.D., Moore T.A., Moore A.L., Gust D. // Chem. Eur. J. 2009. V. 15. P. 3936. https://doi.org/10.1002/chem.200900043
- Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855. https://doi.org/10.1039/C5RA06628J
- Doddi S., Narayanaswamy K., Ramakrishna B., Singh S.P., Bangal P.R. // J. Fluoresc. 2016. V. 26. P. 1939. https://doi.org/10.1007/s10895-016-1886-0
- Yan Q., Xu J., Luo M. et al. // Dyes Pigm. 2023. V. 214. P. 111231. https://doi.org/10.1016/j.dyepig.2023.111231
- Hu Z., Zhang Q., Xue M., Sheng Q., Liu Y. // Opt. Mater. 2008. V. 30. P. 851. https://doi.org/10.1016/j.optmat.2007.03.012
- Yao Z., Wang X., Liu J. et al. // Chem. Commun. 2023. V. 59. P. 2469. https://doi.org/10.1039/d2cc06707b
- Naren G., Hsu C.W., Li S. et al. // Nat. Commun. 2019. V. 10. P. 3996. https://doi.org/10.1038/s41467-019-11885-4
- Yildiz I., Deniz E., Raymo F. // Chem. Soc. Rev. 2009. V. 38. P. 1859. https://doi.org/10.1039/b804151m
- Credi A. // New J. Chem. 2012. V. 36. P. 1925. https://doi.org/10.1039/c2nj40335h
- Chashchikhin O.V., Budyka M.F. // High Energy Chem. 2017. V. 51. P. 449. https://doi.org/10.1134/S0018143918010022
- Zhao J.-L., Li M.-H., Cheng Y.-M. et al. // Coord. Chem. Rev. 2023. V. 475. P. 214918. https://doi.org/10.1016/j.ccr.2022.214918
- Budyka M.F., Chashchikhin O.V., Nikulin P.A. // Russ. Nanotechnol. 2016. V. 11. N. 1–2. P. 67. https://doi.org/10.1134/S199507801601002X
- Chashchikhin O.V., Budyka M.F., Gavrishova T.N., Li V.M. // RSC Adv. 2017. V. 7. P. 2236. https://doi.org/10.1039/C6RA27577J
- Liu M., Tang G., Liu Y., Jiang F. // J. Phys. Chem. Lett. 2024. V. 15. P. 1975. https://doi.org/10.1021/acs.jpclett.3c03413
- Diaz S., Menendez G., Etchehon M. et al. // ACS Nano. 2011. V. 5. P. 2795. https://doi.org/10.1021/nn103243c
- Zhu L., Zhu M.-Q., Hurst J.K., Li A.D.Q. // J. Am. Chem. Soc. 2005. V. 127. P. 8968. https://doi.org/10.1021/ja0423421
- Han G., Mokari T., Ajo-Franklin C., Cohen B.E. // Ibid. 2008. V. 130. P. 15811. https://doi.org/10.1021/ja804948s
- Diaz S.A., Giordano L., Jovin T.M., Jares-Erijman E.A. // Nano Lett. 2012. V. 12. P. 3537. https://doi.org/10.1021/nl301093s
- Budyka M.F., Nikulin P.A., Gavrishova T.N., Chashchikhin O.V. // ChemPhotoChem. 2021. V. 5. P. 582. https://doi.org/10.1002/cptc.202000285
- Budyka M.F., Nikulin P.A. // High Energy Chem. 2021. V. 55. P. 436. https://doi.org/10.31857/S0023119321060036
- Oneil C.E., Jackson J.M., Shim S.-H., Soper S.A. // Anal. Chem. 2016. V. 88. P. 3686. https://doi.org/10.1021/acs.analchem.5b04472
- Zhang Y., Lucas J.M., Song P. et al. // Proc. Natl. Acad. Sci. U.S.A. 2015. V. 112. P. 8959. https://doi.org/10.1073/pnas.1502005112
- Andoy N.M., Zhou X., Choudhary E. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 1845. https://doi.org/10.1021/ja309948y
- Chen X., Hou X.-F., Chen X.-M., Li Q. // Nat. Commun. 2024. V. 15. P. 5401. https://doi.org/10.1038/s41467-024-49670-7
- Wang L., Zhong W., Gao W., Liu W., Shang L. // Chem. Eng. J. 2024. V. 479. P. 147490. https://doi.org/10.1016/j.cej.2023.147490
- https://www.sciencedirect.com
Supplementary files
