Absorption of Sulfur During Filtration Combustion of Sulfur-Containing Solid Fuels and Waste by Calcium-Containing Sorbents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The analysis of the results of studies on the absorption of sulfur using marble additives in the charge during filtration combustion of various types of sulfur fuels and waste was carried out. It has been shown that when fuels containing metal sulfides and organic sulfur compounds are burned, the addition of marble can significantly (2–3 times) increase the proportion of sulfur passing into solid combustion products, whereas for fuels containing metal sulfates, a similar addition of marble increases the sulfur content in the solid residue by only 25–30%.

Full Text

Restricted Access

About the authors

V. M. Kislov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: vmkislov@icp.ac.ru
Russian Federation, Chernogolovka

Yu. Yu. Tsvetkova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Russian Federation, Chernogolovka

E. N. Pilipenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Russian Federation, Chernogolovka

M. V. Salganskaya

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Russian Federation, Chernogolovka

A. Yu. Zaychenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Russian Federation, Chernogolovka

D. N. Podlesny

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Russian Federation, Chernogolovka

E. A. Salgansky

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Russian Federation, Chernogolovka

M. V. Tsvetkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. Renew. Sustain. Energy Rev. 2023. V. 177. 113213. https://doi.org/10.1016/j.rser.2023.113213
  2. Salgansky E.A., Zaichenko A.Y., Podlesniy D.N., Salganskaya M.V., Tsvetkov M.V. // Fuel. 2017. V. 210. P. 491. https://doi.org/10.1016/j.fuel.2017.08.103
  3. Banerjee A., Paul D. // Energy. 2021. V. 221. 119868. https://doi.org/10.1016/j.energy.2021.119868
  4. Manelis G.B., Glazov S.V., Salgansky E.A., Lempert D.B. // Russ. Chem. Rev. 2012. V. 81. № 9. P. 855. https://doi.org/10.1070/RC2012v081n09ABEH004279
  5. Kolesnikova Y.Y., Kislov V.M., Salgansky E.A. // Russ. J. Phys. Chem. B. 2016. V. 10. № 5. P. 791. https://doi.org/10.1134/S1990793116050043
  6. Rashwan T.L., Torero J.L., Gerhard J. I. / /Int. J. Heat Mass Transf. 2021. V. 177. 121548. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121548
  7. Dorofeenko S., Podlesniy D., Polianczyk E. et al. // Energies. 2024. V. 17. № 23. P. 6093. https://doi.org/10.3390/en17236093
  8. Kislov V.M., Tsvetkov M.V., Zaichenko A.Y. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 947. https://doi.org/10.1134/S1990793123040255
  9. Salgansky E.A., Tsvetkov M.V., Zaichenko A., Podlesniy D.N., Sedov I.V. // Russ. J. Phys. Chem. B. 2021. V. 15. № 6. P. 969. https://doi.org/10.1134/S1990793121060087
  10. Podlesniy D., Polianczyk E., Tsvetkov M., Yanovsky L., Zaichenko A. // Processes. 2024. V. 12. № 12. 2690. https://doi.org/10.3390/en17236093
  11. Salgansky E.A., Salganskaya M.V., Sedov I.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 4. P. 1042. https://doi.org/10.1134/S1990793124700593
  12. Salgansky E.A., Kislov V.M., Glazov S.V., Salganskaya M.V. // J. Combustion. 2016. V. 1. 9637082. https://doi.org/10.1155/2016/9637082
  13. Tsvetkov M.V., Podlesniy D.N., Freyman V.M. et al. // Russ. J. Appl. Chem. 2020. V. 93. P. 881. https://doi.org/10.1134/S1070427220060154
  14. Salgansky E.A., Kislov V.M., Tsvetkov M.V. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 268. https://doi.org/10.1134/S1990793122020105
  15. Kislov V.M., Tsvetkov M. V., Zaichenko A. Y. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 819. https://doi.org/10.1134/S1990793121050055
  16. Polianczyk E., Tarasov G., Zaichenko A. // E3S Web of Conf. 2024. V. 474. 01013. https://doi.org/10.1051/e3sconf/202447401013
  17. Cheng J., Zhou J., Liu J. et al. // Prog. Energy Combust. Sci. 2003. V. 29. № 5. P. 381. https://doi.org/10.1016/S0360-1285(03)00030-3
  18. Cheah S., Carpenter D.L., Magrini-Bair K.A. // Energy & Fuels. 2009. V. 23. № 11. P. 5291. https://doi.org/10.1021/ef900714q
  19. Yu H., Shan C., Li J., Hou X., Yang L. // J. Environ. Manage. 2024. V. 366. 121532. https://doi.org/10.1016/j.jenvman.2024.121532
  20. Go E.S., Ling J.L. J., Solanki B.S. et al. // Environ. Res. 2024. 119982. https://doi.org/10.1016/j.envres.2024.119982
  21. Tsvetkova Y., Kislov V., Salganskaya M., Podlesniy D., Salgansky E. // E3S Web of Conf. 2024. V. 474. 01010. https://doi.org/10.1051/e3sconf/202447401010
  22. Tsvetkova Y., Kislov V., Zaichenko A. et al. // E3S Web of Conf. 2024. V. 498. 03001. https://doi.org/10.1051/e3sconf/202449803001
  23. Tsvetkov M.V., Zaichenko A.Y., Zhirnov A.A. // Theor. Found. Chem. Eng. 2013. V. 47. P. 608. https://doi.org/10.1134/S0040579513040349
  24. Tsvetkov M.V., Polianczyk E.V., Zaichenko A.Y. // Theor. Found. Chem. Eng. 2018. V. 52. P. 837. https://doi.org/10.S0040579518030168
  25. Tsvetkova Y.Y., Kislov V.M., Pilipenko E.N. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 980. https://doi.org/10.1134/S199079312470043X
  26. Kislov V.M., Tsvetkova Yu.Yu., Tsvetkov M.V., Pilipenko E.N., Salganskaya M.V. // Russ. J. Phys. Chem. B. 2021. V. 15. № 4. P. 645. https://doi.org/10.31857/S0207401X21080057
  27. Kislov V.M., Tsvetkova Yu.Yu., Tsvetkov M.V. et al. // Combust. Explos. Shock Waves. 2023. V. 59. № 2. P. 83. https://doi.org/10.15372/FGV20230210
  28. Kislov V.M., Tsvetkova Y.Y., Glazov S.V. et al. // Russ. J. Phys. Chem. B. 2020. V. 14. P. 660. https://doi.org/10.1134/S1990793120040156
  29. Borovik K.G., Lutsenko N.A. // Combust. Explos. Shock Waves. 2022. V. 58. № 3. P. 290. https://doi.org/10.1134/S0010508222030042
  30. Aldushin A.P., Matkowsky B.J., Schult D.A. // J. Eng. Math. 1997. V. 31. P. 205. https://doi.org/10.1023/A:1004245013529
  31. Zheng Z., You Y., Guo J. et al. // ACS Omega. 2022. V. 7. № 33. P. 29116. https://doi.org/10.1021/acsomega.2c02991
  32. Hu G., Dam-Johansen K., Wedel S., Hansen J.P. // Prog. Energy Combust. Sci. 2006. V. 32. № 3. P. 295. https://doi.org/10.1016/j.pecs.2005.11.004

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the elemental composition of coal during oxidation: relative change in the fraction (N) of carbon (1), hydrogen (2), oxygen (3), sulphur (4) and nitrogen (5).

Download (445KB)
3. Fig. 2. Dependence of change in mass of marble particles residue on the calcination temperature: 1 - marble particles loaded into the furnace in their original form (without coal); 2 - coal and marble particles loaded layer by layer into the cuvette; 3 - mass of marble during calcination with coal, calculated on the basis of the chemical composition of the samples obtained in the experiment, assuming that the formed products are CaO and CaS.

Download (362KB)
4. Fig. 3. Change in time of sulphur content during calcination of brown coal and marble in the resulting products: 1 - in solid coal residue, 2 - in marble, 3 - in gaseous products.

Download (357KB)

Copyright (c) 2025 Russian Academy of Sciences