Quantum chemical simulation of reactions in a nanogold–oxygen–hydrogen system

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Quantum chemical calculations are performed to determine the heats of adsorption of H2 and O2 on the simplest electrically neutral Au3 cluster or the negatively charged Au3- cluster. A detailed mechanism is proposed for reaction between O2 and (Au3H2) adsorbate, and the energy budget for the elementary reactions producing (Au3O)- and H2O is calculated. The energy budget is also calculated for the elementary steps involved in the reaction between (Au3O)- and H2 producing Au3- and H2O. Based on the calculated results, an explanation is proposed for the experimental data on interaction of hydrogen and oxygen with gold nanoparticles deposited on pyrolytic graphite. Since the gold nanoparticles located on graphite are negatively charged, the calculations are performed accordingly for negatively charged gold-containing particles.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Grishin

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Ресей, Moscow, 119991

D. Baimukhambetova

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Ресей, Moscow, 119991

A. Gatin

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Ресей, Moscow, 119991

S. Sarvadii

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Ресей, Moscow, 119991

V. Slutskii

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: slutsky@chph.ras.ru
Ресей, Moscow, 119991

V. Kharitonov

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Baumer. Science. 327, 319(2010). https://doi.org/10.1126/science.1183591
  2. Raptis, H. Garcia, M. Stratakis. Angew. Chem. Int. Ed. 48, 3133(2009). https://doi.org/10.1002/anie.200805838
  3. S.F.R. Taylor, J. Sa, C. Hardacre C. ChemCatChem. 3 119 (2011). https://doi.org/10.1002/cctc.201000337
  4. Y. Zhu, L. Tian, Z. Jiang, S. Pei, S. Xie, M. Qiao, K. Fan. J. Catal. 281, 106(2011). https://doi.org/10.1016/j.jcat.2011.04.007
  5. Corma, P. Serna. Science. 313, 332(2006). https://doi.org/10.1126/science.1128383
  6. A.K. Gatin, M.V. Grishin, N.V. Dokhlikova, A.A. Kirsankin, N.N. Kolchenko, V.A. Kharitonov, B.R. Shub, S.A. Gurevich, V.M. Kozhevin, D.A. Yavsin, T.N. Rostovshchikova. Russian Chemical Bulletin. 63(8) 1696(2014). https://doi.org/10.1007/s11172-014-0655-y
  7. V.M. Kozhevin, D.A. Yavsin, V.M. Kouznetsov, V.M. Busov, V.M. Mikushkin, S.Yu. Nikonov, S.A. Gurevich, A. Kolobov. J. Vac. Sci. Techn. B. 18, 1402(2000). https://doi.org/10.1116/1.591393
  8. M.V. Grishin, A. K.Gatin, V.G. Slutskii, A.S. Fedotov, V.A. Kharitonov, B.R Shub. Russian Journal of Physical Chemistry B. 16(3), 395(2022). https://doi.org/10.1134/s1990793122030150
  9. M.V. Grishin, A. K.Gatin, V.G. Slutskii, A.S. Fedotov, V.A. Kharitonov, B.R Shub. Russian Journal of Physical Chemistry B. 17(1), 49(2023). https://doi.org/10.1134/s1990793123010050
  10. M.V. Grishin, A.K. Gatin, V.A. Kharitonov, S.A. Ozerin, S.Yu. Sarvadii, B.R. Shub.// Russian Journal of Physical Chemistry B. 16(2), 211(2022). https://doi.org/10.1134/S199079312232001X
  11. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy, S.A. Ozerin, E.I. Rudenko, M.V. Grishin, B.R. Shub. Russian Journal of Physical Chemistry B. 16(4), 722(2022). https://doi.org/10.1134/s1990793122040042
  12. T. Ozaki. Phys. Rev. B. 67, 155108(2003). https://doi.org/10.1103/PhysRevB.67.155108
  13. T. Ozaki, H. Kino. Phys. Rev. B. 69, 195113(2004). https://doi.org/10.1103/PhysRevB.69.195113
  14. L.N. Rosanov. Vakuumnaya Tehnika, 2-nd Edition. Moscow, Vysshaya Shkola, 1990. 220 P. [in Russian].

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Structures of Au3 and Au3-, as well as the structures of electroneutral and negatively charged adsorbates Au3H2 and (Au3H2)- isomers. Gray labels are Au, black labels are H. Distances are in Å. The heats of adsorption in kcal/mol are given in square brackets.

Жүктеу (68KB)
3. Fig. 2. Structures of the electroneutral and negatively charged adsorbate isomers Au3O2 and (Au3O2)-. Gray labels are Au, white labels are O. Distances are in Å. The heats of adsorption in kcal/mol are given in square brackets.

Жүктеу (117KB)
4. Fig. 3. Mechanism of interaction of stable negatively charged adsorbate (H-Au3-H)- with two O2 molecules. Gray labels are Au, white labels are O, and black labels are H. Distances are in Å. The heats of elementary reactions in kcal/mol are given in square brackets.

Жүктеу (124KB)
5. Fig. 4. Mechanism of interaction of negatively charged oxide (Au3O)- with H2 molecule. Gray labels are Au, white labels are O, and black labels are H. Distances are in Å. The heats of elementary reactions in kcal/mol are given in square brackets.

Жүктеу (119KB)

© Russian Academy of Sciences, 2025