Ppropagation of a combustion wave at detonation transmission from a pipe into a free cylindrical gaseous charge

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The combustion in a free cylindrical gas charge caused by detonation transmission from the initiating tube was experimentally investigated. The dependences of the combustion velocity change along this charge for stoichiometric mixtures of ethane, ethylene and propane with oxygen were obtained. A pulsating combustion pattern along the charge was observed, as a consequence of the damped oscillatory process. The speed of this process varied from the detonation velocity at the section of the initiating tube to 200–350 m/s at the end of the gas charge.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Mikhalkin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Ресей, Moscow

S. Khomik

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: sergei.khomik@gmail.com
Ресей, Moscow

E. Anderzhanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Ресей, Moscow

A. Ivantsov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Ресей, Moscow

A. Tereza

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Ресей, Moscow

I. Chebotarev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Ресей, Moscow

A. Cherepanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Ресей, Moscow

S. Medvedev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Krivosheyev P, Penyazkov O. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 388. https://doi.org/10.1134/S1990793123020094
  2. Kiverin A.D., Medvedkov I.S. & Yakovenko I.S. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1075. https://doi.org/10.1134/S1990793122060057
  3. Mikhalkin V.N., Sumskoi S.I., Tereza A.M. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 629. https://doi.org/10.1134/S1990793122040261
  4. Sumskoi S.I., Sof’in A.S., Zainetdinov S.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 1. P. 419. https://doi.org/10.1134/S199079312302015X
  5. Zeldovich Ya.B. // ZhETF. 1941. V. 11. № 1. P. 159.
  6. Medvedev S.P., Maximova O.G., Cherepanova T.T. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1112. https://doi.org/10.1134/S1990793122060082
  7. Borisov A.A., Mikhalkin V.N., Khomik S.V. // Dokl. Acad. Nauk SSSR. 1987. V. 296. № 1. P. 88.
  8. Vasil’ev A.A., Zak D.V. // Combust. Explos. Shock Waves. 1986. V. 22. P. 463. https://doi.org/10.1007/BF00862893
  9. Borisov A.A., Mikhalkin V.N., Khomik S.V. // Device for determining the critical diameter of gas detonation propagation in a free cylindrical explosive chargecharge. Сertificate of authorship. 1396765 SSSR.
  10. Bykova, N.G., Kusov, A.L., Kozlov, P.V. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 732. https://doi.org/10.1134/S1990793124700222
  11. Filimonova E.A., Dobrovolskaya A.S. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1285. https://doi.org/10.1134/S1990793123060167
  12. Borisov A.A., Mikhalkin V.N., Khomik S.V. // Soviet J. Chem. Phys. 1992. V. 8. № 6. P.1314.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Setup diagram.

Жүктеу (354KB)
3. Fig. 2. Photoregistration pattern of the transition of the detonation wave that left the initiating tube into a free charge with a diameter of 70 mm, formed from a mixture of C3H8 + 5O2: 1 - detonation front in the booster tube, 2 - pulsating front of turbulent combustion.

Жүктеу (418KB)
4. Fig. 3. Photoregistration pattern of the decay of the detonation wave that left the initiating tube into a free charge with a diameter of 60 mm, formed from a mixture of C3H8 + 5O2: 1 - detonation front in the booster tube, 2 - pulsating front of turbulent combustion.

Жүктеу (442KB)
5. Fig. 4. Change in the velocity of the explosive process in the mixture of C3H8 + 5O2 in the initiating tube and a free charge with a diameter of 60 (1), 40 (2), 70 (3) and 82 mm (4).

Жүктеу (514KB)
6. Fig. 5. Change in the velocity of the explosive process in a mixture of C2H4 + 3O2 and a free cylindrical charge with a diameter of 40 mm (1), in a mixture of C2H6 + 3.5O2 and a charge with a diameter of 60 mm (2), and also in a mixture of C3H8 + 5O2 and a charge with a diameter of 40 mm (3) in an initiating tube.

Жүктеу (489KB)
7. Fig. 6. Change in the velocity of the explosive process in a mixture of C2H4 + 3O2 for different values of the diameter of the free charge: 1 - 94 mm, 2 - 114 mm and 3 - 155 mm. Dashed line - the speed of sound a0 in the initial mixture.

Жүктеу (538KB)

© Russian Academy of Sciences, 2025