Stability of calcium sulfate at the gasification of solid fuel in the filtration mode

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The regularities of SO2 release from calcium sulfate during the gasification of solid fuel in the filtration combustion mode have been studied. The maximum amounts of SO2 released into the gas phase under real conditions of a laboratory vertical shaft reactor have been estimated. It has been shown that the most important factors determining the stability of CaSO4 are the process temperature and the amount of silicon dioxide in the inorganic part of the solid fuel.

Texto integral

Acesso é fechado

Sobre autores

Yu. Tsvetkova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: iulya@icp.ac.ru
Rússia, Chernogolovka

A. Zaichenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: iulya@icp.ac.ru
Rússia, Chernogolovka

D. Podlesniy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: iulya@icp.ac.ru
Rússia, Chernogolovka

M. Salganskaya

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: iulya@icp.ac.ru
Rússia, Chernogolovka

V. Kislov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: iulya@icp.ac.ru
Rússia, Chernogolovka

E. Salgansky

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: iulya@icp.ac.ru
Rússia, Chernogolovka

M. Tsvetkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: iulya@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. Banerjee A., Paul D. // Energy. 2021. V. 221. 119868. https://doi.org/10.1016/j.energy.2021.119868
  2. Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sustain. Energy Rev. 2023. V. 177. 113213. https://doi.org/10.1016/j.rser.2023.113213
  3. Kislov V.M., Tsvetkov M.V., Zaichenko A.Y. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 947. https://doi.org/10.1134/S1990793123040255
  4. Dorofeenko S., Podlesniy D., Polianczyk E. et al. // Energies. 2024. V. 17. № 23. P. 6093. https://doi.org/10.3390/en17236093
  5. Kislov V.M., Tsvetkova Y.Y., Pilipenko E.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 374. https://doi.org/10.1134/S1990793123020070
  6. Yu H., Shan C., Li J., Hou X., Yang L. // J. Environ. Manage. 2024. V. 366. № 121532. https://doi.org/10.1016/j.jenvman.2024.121532
  7. Xing G., Wang W., Zhao S., Qi L. // Environ. Sci. Pollut. Res. 2023. V. 30. № 31. P. 76471. https://doi.org/10.1007/s11356-023-27872-8
  8. Kislov V.M., Tsvetkova Yu.Yu., Tsvetkov M.V. et al. // Combust. Explos. Shock Waves. 2023. V.59. № 2. P. 83. https://doi.org/10.15372/FGV20230210
  9. Tsvetkova Y.Y., Kislov V.M., Pilipenko E.N. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 980. https://doi.org/10.1134/S199079312470043X
  10. Cheng J., Zhou J., Liu J. et al. // Prog. Energy Combust. Sci. 2003. V. 29. № 5. P. 381. https://doi.org/10.1016/S0360-1285(03)00030-3
  11. Matjie R.H., Lesufi J.M., Bunt J.R. et al. // ACS Omega. 2018. V. 3. № 10. P. 14201. https://doi.org/10.1021/acsomega.8b01359
  12. Zhao L., Du Y., Zeng Y., Kang Z., Sun B. // Energies. 2020. V. 13. № 3. P. 553. https://doi.org/10.3390/en13030553
  13. Cheah S., Carpenter D.L., Magrini-Bair K.A. // Energy Fuels. 2009. V. 23. № 11. P. 5291. https://doi.org/10.1021/ef900714q
  14. Go E.S., Ling J.L.J., Solanki B.S. et al. // Environ. Res. 2024. V. 263. P. 119982. https://doi.org/10.1016/j.envres.2024.119982
  15. Tsvetkova Y., Kislov V., Salganskaya M., Podlesniy D., Salgansky E. // E3S Web Conf. 2024. V. 474. 01010. https://doi.org/10.1051/e3sconf/202447401010
  16. Tian H., Guo Q., Chang J. // Energy Fuels. 2008. V. 22. № 6. P. 3915. https://doi.org/10.1021/ef800508w
  17. Jia X., Wang Q., Cen K., Chen L. // Fuel. 2016. V. 163. P. 157. https://doi.org/10.1016/j.fuel.2015.09.054
  18. Wang Z., Yang W., Liu H. et al. // J. Anal. Appl. Pyrolysis. 2019. V. 142. 104617. https://doi.org/10.1016/j.jaap.2019.05.006
  19. Xiao R., Song Q. // Combust. and Flame. 2011. V. 158. № 12. P. 2524. https://doi.org/10.1016/j.combustflame.2011.05.011
  20. Trusov B.G. // Proc. 14th Intern. Conf. Chemical Thermodynamics St. Petersburg: NIIKh SPbGU, 2002. P. 483.
  21. Salgansky E.A., Salganskaya M.V., Sedov I.V. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1042. https://doi.org/10.1134/S1990793124700593
  22. Tsvetkov M.V., Polianczyk E.V., Zaichenko A.Y. et al. // Solid Fuel Chem. 2018. V. 52. P. 86. https://doi.org/10.3103/S036152191802009X
  23. Kislov V.M., Tsvetkova Y.Y., Tsvetkov M.V., Pilipenko E.N., Salganskaya M.V. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 645. https://doi.org/10.1134/S1990793121040187

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of counter-current reactor of filtration combustion with absorption of sulfur-containing gases.

Baixar (649KB)
3. Fig. 2. Dependence of equilibrium partial pressure of SO2 over CaSO4 on temperature for the system CaSO4/air/H2O with the component ratio of 10/10/0 (dark dots) and CaSO4/air/H2O with the ratio of 10/10/1 (light dots).

Baixar (326KB)
4. Fig. 3. Dependence of mass flow rate carried out by the gas flow of SO2 on temperature.

Baixar (307KB)
5. Fig. 4. Dependence of mass fraction of sulfur (F) remaining in the solid residue on temperature.

Baixar (294KB)
6. Fig. 5. Dependences of mass concentrations of substances in a mixture of CaSO4+O2+SiO2 on temperature at a pressure of 0.1 MPa: 1 ─ CaSO4 (solid), 2 ─ CaSiO3 (solid), 3 ─ SO2, 4 ─ O2, 5 ─ SiO2 (solid).

Baixar (345KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025