3D model of a stable triangle LiF–NaBr–KBr four-component reciprocal system Li+, Na+, K+ || F-, Вr-

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A 3D model of the phase equilibrium states of the quasi-three-component system LiF–NaBr–KBr, which is a stable triangle of the four-component reciprocal system Li+, Na+, K+ || F-, Br-, has been constructed. Based on the 3D-model, polythermal, isothermal sections and the polytherm of phase crystallization were constructed for the first time. Two polythermal sections contain wide areas of boundary solid solutions based on sodium and potassium bromide. In an isothermal section at 650 оC, the fields of the liquid phase and the coexisting two and three phases are delimited. The crystallization polytherm is represented by three fields. In the crystallization field of lithium fluoride, the area of separation of two liquids is limited. The direction of the ion exchange reaction 2LiBr + NaF + KF = 2LiF + NaBr + KBr was confirmed by thermodynamic calculations at temperatures of 400, 600, 800, 1000K. The exothermic nature of the exchange reaction is confirmed by taking a DTA heating curve for a mixture of powders from 50% LiBr + 25% NaF + 25% KF, and the phase composition of the reaction products LiF + NaBr(OTR) + KBr(OTR) is confirmed by X-ray phase analysis data, where OTR is limited solid solution.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Burchakov

Samara State Technical University

Email: dvoryanova_kat@mail.ru
Ресей, Samara

I. Garkushin

Samara State Technical University

Email: dvoryanova_kat@mail.ru
Ресей, Samara

E. Dvoryanova

Samara State Technical University

Хат алмасуға жауапты Автор.
Email: dvoryanova_kat@mail.ru
Ресей, Samara

U. Emelyanova

Samara State Technical University

Email: dvoryanova_kat@mail.ru
Ресей, Samara

A. Finogenov

Samara State Technical University

Email: dvoryanova_kat@mail.ru
Ресей, Samara

Әдебиет тізімі

  1. Ma L., Zhang C., Wu Yu. at al. // Solar Energy Materials and Solar Cells. 2012. 235. 111485. https://doi.org/10.1016/j.solmat.2021.111485
  2. Caraballo A., Galán-Casado S., Caballero Á. at al. // Energies. 2021. 14. I. 4. https://doi.org/10.3390/en14041197
  3. Bauer T., Odenthal Ch., Bonk A. // Chemie Ingenieur Technic. 2021. 93. I. 4. P. 534–546. https://doi.org/10.1002/cite.202000137
  4. Masset P., Guidotti R.A. // Journal of Power Sources. 2007. 164. P. 397–414. https://doi.org/10.1016/j.jpowsour.2006.10.080
  5. Khokhlov V.A. // Russian Metallurgy (Metally). 2010. № 2. P. 96–104. https://doi.org/10.1134/S0036029510020047
  6. Khimicheskiye istochniki toka: Spravochnik [Chemical current sources: Directory] / Ed. N.V. Korovina, A.M. Skundina. M.: Izdatel’stvo MEI. 2003. [In Russian].
  7. Roper R., Harkema M., Sabharwall P. at al. // Annals of Nuclear Energy. 2022. 69. 108924. https://doi.org/10.1016/j.anucene.2021.108924
  8. Rozhentsev D.A., Tkachev D.A. // Rasplavy. 2023. № 6. P. 570–576. [In Russian]. https://doi.org/10.31857/S0235010623060063
  9. Khokhlov V.A., Ignatiev V.V., Afonichkin V. Evaluating physical properties of molten salt reactor fluoride mixtures // J. of Fluorine Chemistry. 2009. 130. № 1. P. 30–37.
  10. Novoselova A.V., Smolenskiy V.V., Bove A.L. // Rasplavy. 2023. № 5. P. 443–453. [In Russian].https://doi.org/ 10.31857/S0235010623040047
  11. Garkushin I.K., Kondratyuk I.M., Dvoryanova Ye.M. Analiz, prognozirovaniye i eksperimental’noye issledovaniye ryadov sistem iz galogenidov shchelochnykh i shchelochnozemel’nykh elementov [Analysis, prediction and experimental study of a series of systems of halides of alkali and alkaline earth elements]. Samara: Samar. gos. tekhn. un-t, 2007. [In Russian].
  12. Peng Q., Ding J., Wei X. at al. // Applied Energy. 2010. 87. I. № 9. P. 2812–2817. https://doi.org/10.1016/j.apenergy.2009.06.022
  13. Serp J., Allibert M., Beneš O. at al. // Progress in Nuclear Energy. 2014. 77. P. 308–319. https://doi.org/10.1016/j.pnucene.2014.02.014
  14. Diagrammy plavkosti solevykh sistem. Ch. I. Dvoynyye sistemy s obshchim anionom [Fusibility diagrams of salt systems. Part I. Binary systems with a common anion] / Edited by V.I. Posypaiko, E.A. Alekseeva. M.: Metallurgiya. 1977. [In Russian].
  15. Diagrammy plavkosti solevykh sistem. Ch. II. Dvoynyye sistemy s obshchim anionom [Fusibility diagrams of salt systems. Part II. Binary systems with a common anion] / Edited by V.I. Posypaiko, E.A. Alekseeva. M.: Metallurgiya.1977. [In Russian].
  16. Diagrammy plavkosti solevykh sistem. Ch. III. Dvoynyye sistemy s obshchim kationom [Fusibility diagrams of salt systems. Part III. Binary systems with a common cation] / Edited by V.I. Posypaiko, E.A. Alekseeva. M.: Metallurgiya. 1979. [In Russian].
  17. Diagrammy plavkosti solevykh sistem. Troynyye vzaimnyye sistemy [Fusibility diagrams of salt systems. Triple reciprocal systems] / Edited by V.I. Posypayko, Ye.A. Alekseyevoy. M.: Khimiya. 1977. [In Russian].
  18. Diagrammy plavkosti solevykh sistem. Mnogokomponentnyye sistemy [Fusibility diagrams of salt systems. Multicomponent systems] / Edited by V.I. Posypayko, Ye.A. Alekseyevoy. M.: Khimiya. 1977. [In Russian].
  19. Yegortsev G.Ye., Garkushin I.K., Istomova M.A. Fazovyye ravnovesiya i khimicheskoye vzaimodeystviye v sistemakh s uchastiyem ftoridov i bromidov shchelochnykh metallov [Phase equilibria and chemical interaction in systems involving fluorides and bromides of alkali metals]. Yekaterinburg: UrO RAN, 2008. [In Russian].
  20. Burchakov A.V., Garkushin I.K., Milov S.N. // Izv. Sarat. un-ta. Nov. ser. Ser. Khimiya. Biologiya. Ekologiya. 2018. 18. № 4. P. 370. [In Russian]. https://doi.org/10.18500/1816-9775-2018-18-4-370-377
  21. Kang J. 3D Stereo spatial phase diagram for typical complex ternary system // J. Kang. – Material Sci & Eng. 2019. 3. I. № 1. P. 38–40.
  22. Termicheskiye konstanty veshchestv. Spravochnik [Thermal constants of substances. Directory] / Edited by V.P. Glushko. M.: VINITI, 1981. X. № 1. [In Russian].
  23. Termicheskiye konstanty veshchestv. Spravochnik [Thermal constants of substances. Directory] / Edited by V.P. Glushko. M.: VINITI, 1981. X. № 2. [In Russian].
  24. Barin I. Thermochemical data of pure substances. VCH Verlagsgeselschaft mbH. Weinheim, 1995.
  25. Garkushin I.K., Istomova M.A., Garkushin A.I. i dr. // Izv. vuzov. Khimiya i khim. tekhnologiya. 2020. 63. № 4. С. 55–62. [In Russian]. https://doi.org/10.6060/ivkkt.20206304.6159
  26. Yegunov V.P. Vvedeniye v termicheskiy analiz [Introduction to Thermal Analysis]. Samara, 1996. [In Russian].
  27. Wagner М. Thermal Analysis in Practice: Fundamental Aspects. Hanser Publications. 2018. P. 158.
  28. Moshchenskiy Yu.V. // Pribory i tekhnika eksperimenta. M.: RAN. 2003. 46. № 6. С. 143. [In Russian].
  29. Fedotov S.V., Moshchenskiy Yu.V. Interfeysnoye programmnoye obespecheniye DSCTool [Interface software DSCTool]. Samara: Samar. gos. tekhn. un-t. 2004. [In Russian].

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scan of the face elements of the system Li+, Na+, K+ || F-, Vg- [ ].

Жүктеу (133KB)
3. Fig. 2. The prism of the compositions of the system Li+, Na+, K+ || F-, Vg- [ ].

Жүктеу (129KB)
4. Fig. 3. 3D model of the quasi-linear LiF–NaBr–KBr system: a) the phase complex of the system; b) a detachable model of the phase complex.

Жүктеу (265KB)
5. Fig. 4. T-x is a QT section diagram of the quasi–linear LiF–NaBr-KBr system constructed from a 3D model.

Жүктеу (140KB)
6. Fig. 5. T-x is a K1K2 section diagram of the quasi–linear LiF–NaBr-KBr system constructed from a 3D model.

Жүктеу (136KB)
7. Fig. 6. Isothermal section at a temperature of 650 ° C of the quasi–linear LiF–NaBr-KBr system constructed from a 3D model.

Жүктеу (84KB)
8. Fig. 7. Polytherm of crystallization of the quasi–linear LiF–NaBr-KBr system constructed from a 3D model.

Жүктеу (82KB)
9. Figure 8. The location of mixture 1 on the K1–K2 conversion line in the unstable triangle NaF–KF–LiBr.

Жүктеу (52KB)
10. Fig. 9. Derivatogram of heating a mixture of powders 50٪ LiBr + 25% NaF + 25% KF.

Жүктеу (92KB)
11. Fig. 10. Derivatogram of cooling the melt of a mixture of powders 50٪ LiBr + 25% NaF + 25% KF.

Жүктеу (87KB)
12. 11. X-ray image of a sample of the composition 50% LiBr + 25% NaF + 25% KF (KBr PDF 01-072-1541; NaBr PDF 01-078-0761; LiF PDF 01-071-3743).

Жүктеу (88KB)
13. Fig. 12. The crystallization scheme of mixture 1 on the conversion line K1–K2 in a stable triangle LiF–NaBr–KBr.

Жүктеу (93KB)

© Russian Academy of Sciences, 2024