Surface properties of oxide-fluoride compounds formed during the aluminothermic synthesis of high-entropy alloys
- Autores: Russkih A.S.1, Zhilina E.M.1, Osinkina T.V.1
-
Afiliações:
- The Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
- Edição: Nº 3 (2025)
- Páginas: 205-217
- Seção: Articles
- URL: https://rjmseer.com/0235-0106/article/view/686292
- DOI: https://doi.org/10.31857/S0235010625030033
- ID: 686292
Citar
Resumo
This work presents thermodynamic modeling and experimental study of the oxide-fluoride phase formed during the production of high-entropy refractory, lightweight alloys of the Al–Ti–Zr–V–Nb system by the method of combined aluminothermic reduction from metal oxides of titanium, zirconium, niobium and vanadium. The aim of the work was to determine the optimal conditions for obtaining such alloys and to find the characteristics of phase separation. Modeling showed that the formation of a lightweight and refractory alloy requires temperatures of at least 1600°C and an aluminum content in the range of 15 to 40 atomic percent. In this case, it is recommended to use a small excess of aluminum in the charge to ensure the transition of some aluminum to the metallic phase. Calculations of surface tension and density showed a significant difference between the metallic and oxide-fluoride phases, which contributes to the settling of the metallic melt to the bottom of the crucible and the formation of a clear separation boundary between the two phases. Interfacial tension in the range of 1000–1600 mJ/m² ensures minimal wetting of the slag by the metal and reduces the amount of non-metallic inclusions in the metal, which has a positive effect on the quality of the final product. It is noted that an increase in the number of components in the melt complicates the selection of empirical coefficients, which limits the accuracy of the calculation by the empirical method. Chemical analysis of the oxide-fluoride phase after the experiment confirmed the presence of zirconium and titanium oxides in it, which increase the surface tension and density compared to the calculated values. However, these parameters remain below the corresponding values of the metallic phase, which ensures effective phase separation and the formation of a solid metal ingot without excessive adhesion to the oxide-fluoride phase. The results obtained demonstrate the promise of the selected conditions for the production of high-quality high-entropy alloys and can be used for further evaluation calculations and optimization of technological processes.
Palavras-chave
Texto integral

Sobre autores
A. Russkih
The Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: russkih_A_S@mail.ru
Rússia, Yekaterinburg
E. Zhilina
The Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Email: russkih_A_S@mail.ru
Rússia, Yekaterinburg
T. Osinkina
The Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Email: russkih_A_S@mail.ru
Rússia, Yekaterinburg
Bibliografia
- Filatov A.A. i dr. Sposob polucheniya ligatury AlZr15 iz oksidov // Ural’skaya shkola molodyh metallovedov : materialy XVIII Mezhdunarodnoj nauchno-tekhnicheskoj Ural’skoj shkoly-seminara metallovedov – molodyh uchenyh, Ekaterinburg, 21–23 oktyabrya 2017 goda / Otvetstvennyj redaktor: A. A. Popov; Ministerstvo obrazovaniya i nauki. 2017. P. 384–388. [In Russian].
- Zhilina E.M., Krasikov S.A. Surface tension of a titanium-containing oxide–fluoride melt calculated by the polymer theory // Russ. Metall. Maik Nauka-Interperiodica Publishing, 2017. 2017. № 8. P. 642–643.
- Tyushnyakov S.N. et al. Metallothermic Reduction of Natural Cassiterite // Metallurgist. 2021. 65. № 7–8. P. 746–759.
- Mityushova Y.A. et al. Thermodynamic Estimation of the Formation of a High-Entropy Al–Nb–Ti–V–Zr Alloy // Russ. Metall. 2021. 2021. № 2. P. 187–191.
- Zhilina E.M. et al. Possibility of obtaining refractory high-entropy AlTiZrVNb alloys from metal oxides // Russ. Chem. Bull. Springer, 2023. 72.№ 4. P. 895–901.
- Ikornikov D.M. et al. Effect of Doping with Si–B on the Structure of Cast Mo–Nb–Cr–V–Ti–Al High-Entropy Alloy Produced by Gravity-Assisted SHS Metallurgy // Int. J. Self-Propagating High-Temperature Synth. Pleiades Publishing, 2024. 33. № 4. P. 330–335.
- Kirakosyan H. et al. The preparation of high-entropy refractory alloys by aluminothermic reduction process // AIP Conf. Proc. American Institute of Physics Inc., 2024. 2989. № 1.
- Kaya F. et al. Thermochemical Modeling-Assisted Synthesis of AlxCoCrFeNiMn (0.5 ≤ x ≤ 3) High-Entropy Alloys via Combustion Method for Soft Magnetic Applications // Mining, Metall. Explor. Springer Science and Business Media Deutschland GmbH, 2025. 42. № 2. P. 465–477.
- Li R.X., Liaw P.K., Zhang Y. Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides // Mater. Sci. Eng. A. Elsevier, 2017. 707. P. 668–673.
- HSC Chemistry for Windows – Chemical Reaction and Equilibrium Software with extensive Thermochemical Database, product of Outokumpu Research, Oy, Pori, Finland [Electronic resource]. URL: www.outotec.com/hsc. Zagl. s ekrana.
- Balakirev V.F. et al. Joint Metallothermic Reduction of Titanium and Rare Refractory Metals of Group V // Russ. J. Non-Ferrous Met. Pleiades journals, 2021. 62. № 2. P. 190–196.
- Arsent’ev P.P. i dr. Eksperimental’nye raboty po teorii metallurgicheskih processov. M.: Metall. 1989. 288 p. [In Russian].
- Murach N.N. Alyuminotermiya titana. M.: CIINcv. 1958. 51 p.
- Allibert M. et al. Slag Atlas // Slag Atlas. 1995. P. 616.
- Hara S., Ogino K. Density of melts for electroslag remelting // Can. Metall. Q. 1981. 20. № 1. P. 113–116.
- Grigoryan V.A., Belyanchikov L.N., Stomahin. A.YA. Teoreticheskie osnovy elektrostaleplavil’nyh processov. Moskva: Metallurgiya, 1987. 272 p. [In Russian].
- Linchevskij B.V. Tekhnika metallurgicheskogo eksperimenta. Moskva: Nauka., 1979. 256 p. [In Russian].
- Arsent’ev P.P., Koledov L.A. Metallicheskie rasplavy i ih svojstva. M.: Metall. 1976. 376 p. [In Russian].
- Popel’ S.I. Poverhnostnye yavleniya v rasplavah. M.: Metall. 1994. 440 p. [In Russian].
- Popel’ S.I., Sotnikov A.I., Boronenkov V.N. Teoriya metallurgicheskih processov: uchebnoe posobie dlya vuzov. M.: Metall. 1986. 463 p. [In Russian].
- Popel’ S.I. Teoriya metallurgicheskih processov. M.: VINITI. 1971. 132 p.
- Novakovic R. et al. Surface, dynamic and structural properties of liquid Al – Ti alloys // Appl. Surf. Sci. 2012. 258. P. 3269–3275.
- Kotenkov P.V., Cherepanova L.A., Sterkhov E.V. Thermal and Structural Stability of the TiZrHfNbTa Solid Solution // Russ. Metall. Pleiades Publishing, 2024. 2024. № 4. P. 834–840.
- Xin J. et al. Surface tension calculation of molten slag in SiO2–Al2O3–CaO–MgO systems based on a statistical modelling approach // ISIJ Int. 2019. 59. № 5. P. 759–767.
- Nakajima K. Estimation of surface tension for multicomponent silicate melts // Tetsu-to-Hagané. 1994. 80. № 8. P. 599–604.
Arquivos suplementares
