Hippocampal microRNA in the mechanisms of induction of depressive-like behavior by stressor effects
- Authors: Shiskina G.T.1
-
Affiliations:
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
- Issue: Vol 56, No 2 (2025)
- Pages: 19-33
- Section: Articles
- URL: https://rjmseer.com/0301-1798/article/view/685807
- DOI: https://doi.org/10.31857/S0301179825020025
- EDN: https://elibrary.ru/TJHDBC
- ID: 685807
Cite item
Abstract
The pathogenesis of depressive disorders is associated with an imbalance of neurotransmitters in the brain, endocrine disturbances, pro-inflammatory and neurodegenerative processes, so it is not surprising that therapy with classical antidepressants aimed at some individual systems is often ineffective, and, moreover, can cause unwanted side effects. The need to search for new mechanisms of pathology with the aim of their possible use as potential targets in the development of more effective therapeutic agents has drawn attention to small non-coding RNAs (microRNAs). These microRNAs, which regulate the expression of target genes at the post-transcriptional level, are involved in the central nervous system in the control of neurogenesis and synaptic plasticity, as well as in the mechanisms of sensitivity and resistance to stress effects – generally accepted risk factors for depression. This review is devoted to the systematization of the results obtained in rodents on microRNAs and signaling pathways of their participation in provoking a depressive-like state by chronic stress through the regulation of neuroinflammation, neurogenesis, synaptic plasticity and apoptosis in the hippocampus. The results of the analysis expand the understanding of the complex regulatory network involved in the initiation and maintenance of this psychoemotional disorder, which can contribute to the development of adequate therapeutic agents aimed at combating the disease.
Keywords
Full Text

About the authors
G. T. Shiskina
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Author for correspondence.
Email: gtshi@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090
References
- Шабанов П.Д., Ващенко В.И. Биологическая роль микроРНК-146a при вирусных инфекциях. Современная стратегия поиска новых безопасных фармакологических средств лечения // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19. № 2. С. 145–174. https://doi.org/10.17816/RCF192145-174
- Шишкина Г.Т., Дыгало Н.Н. Нейробиологические основы депрессивных расстройств и действия антидепрессантов // Журн. высш. нервн. деят-сти. 2010. Т. 60. № 2. С. 138–152.
- Afridi R., Suk K. Microglial Responses to Stress-Induced Depression: Causes and Consequences // Cells. 2023. V. 12. № 11. 1521. https://doi.org/10.3390/cells12111521.
- Agostini M., Tucci P., Steinert J.R. et al. microRNA-34a regulates neurite outgrowth, spinal morphology, and function // Proc. Natl. Acad. Sci. U. S. A. 2011. V. 108. № 52. P. 21099–21104. https://doi.org/10.1073/pnas.1112063108.
- Antoniuk S., Bijata M., Ponimaskin E., Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability // Neurosci. Biobehav. Rev. 2019. V. 99. P. 101–116. https://doi.org/10.1016/j.neubiorev.2018.12.002.
- Bahi A., Chandrasekar V., Dreyer J.L. Selective lentiviral-mediated suppression of microRNA124a in the hippocampus evokes antidepressants-like effects in rats // Psychoneuroendocrinology. 2014. V. 46. P. 78–87. https://doi.org/10.1016/j.psyneuen.2014.04.009.
- Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function // Cell. 2004. V. 116. № 2. P. 281–297. https://doi.org/10.1016/s0092-8674(04)00045-5.
- Blumberg M.J., Vaccarino S.R., McInerney S.J. Procognitive Effects of Antidepressants and Other Therapeutic Agents in Major Depressive Disorder: A Systematic Review // J. Clin. Psychiatry. 2020. V. 81. № 4. 19r13200. https://doi.org/10.4088/JCP.19r13200.
- Brites D., Fernandes A. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation // Front. Cell. Neurosci. 2015. V. 9. P. 476. https://doi.org/10.3389/fncel.2015.00476.
- Cao M.Q., Chen D.H., Zhang C.H., Wu Z.Z. [Screening of specific microRNA in hippocampus of depression model rats and intervention effect of Chaihu Shugan San] // Zhongguo Zhong Yao Za Zhi. 2013. V. 38. № 10. P. 1585–1589.
- Castañeda P., Muñoz M., García-Rojo G. et al. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons // J. Neurosci. Res. 2015. V. 93. № 10. P. 1476–1491. https://doi.org/10.1002/jnr.23602.
- Chang J., Zhang Y., Shen N., Zhou J., Zhang H. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation // Exp. Brain Res. 2021. V. 239. № 11. P. 3359–3370. https://doi.org/10.1007/s00221-021-06203-8.
- Chao B., Huang S., Pan J., Zhang Y., Wang Y. Saikosaponin d downregulates microRNA-155 and upregulates FGF2 to improve depression-like behaviors in rats induced by unpredictable chronic mild stress by negatively regulating NF-κB // Brain Res. Bull. 2020. V. 157. P. 69–76. https://doi.org/10.1016/j.brainresbull.2020.01.008.
- Cole J., Costafreda S.G., McGuffin P., Fu C.H. Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies // J. Affect. Disord. 2011. V. 134. № 1–3. P. 483–487. https://doi.org/10.1016/j.jad.2011.05.057.
- Dai J., Pan J.Y., Liao N. et al. Influence of miR-155 on behaviors of depression mice through regulating Wnt/β-catenin signaling pathway // Eur. Rev. Med. Pharmacol. Sci. 2020. V. 24. № 3. P. 1398–1407. https://doi.org/10.26355/eurrev_202002_20197.
- Dantzer R., O'Connor J.C., Freund G.G., Johnson R.W., Kelley K.W. From inflammation to sickness and depression: when the immune system subjugates the brain // Nat. Rev. Neurosci. 2008 V. 9. № 1. P. 46–56. https://doi.org/10.1038/nrn2297.
- De Assis G.G., Murawska-Ciałowicz E. BDNF Modulation by microRNAs: An Update on the Experimental Evidence // Cells. 2024. V. 13. № 10. P. 880. https://doi.org/10.3390/cells13100880.
- Duman R.S., Aghajanian G.K. Synaptic dysfunction in depression: potential therapeutic targets // Science. 2012. V. 338. № 6103. P. 68–72. https://doi.org/10.1126/science.1222939.
- Duman R.S., Monteggia L.M. A neurotrophic model for stress-related mood disorders // Biol. Psychiatry. 2006. V. 59. № 12. P. 1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013.
- Dwivedi Y. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications // Dialogues Clin. Neurosci. 2014. V. 16. № 1. P. 43–61. https://doi.org/10.31887/DCNS.2014.16.1/ydwivedi.
- Dwivedi Y. microRNA-124: a putative therapeutic target and biomarker for major depression // Expert. Opin. Ther. Targets. 2017. V. 21. № 7. P. 653–656. https://doi.org/10.1080/14728222.2017.1328501.
- Fan C., Li Y., Lan T. et al. Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression // Mol. Ther. 2022. V. 30. № 3. P. 1300–1314. https://doi.org/10.1016/j.ymthe.2021.11.006.
- Fries G.R., Zhang W., Benevenuto D., Quevedo J. MicroRNAs in Major Depressive Disorder // Adv Exp Med Biol. 2019. V. 1118. P. 175–190. https://doi.org/10.1007/978-3-030-05542-4_9.
- Gruzdev S.K., Yakovlev A.A., Druzhkova T.A., Guekht A.B., Gulyaeva N.V. The Missing Link: How Exosomes and miRNAs can Help in Bridging Psychiatry and Molecular Biology in the Context of Depression, Bipolar Disorder and Schizophrenia // Cell. Mol. Neurobiol. 2019. V. 39. № 6. P. 729–750. https://doi.org/10.1007/s10571-019-00684-6.
- Guan W., Wu X.Y., Jin X., Sheng X.M., Fan Y. miR-204-5p Plays a Critical Role in the Pathogenesis of Depression and Anti-depression Action of Venlafaxine in the Hippocampus of Mice // Curr. Med. Chem. 2024. V. 31. № 22. P. 3412–3425. https://doi.org/10.2174/0929867330666230623163315.
- Guan W., Xu D.W., Ji C.H. et al. Hippo-campal miR-206-3p participates in the pathogenesis of depression via regulating the expression of BDNF // Pharmacol. Res. 2021. V. 174. 105932. https://doi.org/10.1016/j.phrs.2021.105932.
- Gulyaeva N.V. Functional Neurochemistry of the Ventral and Dorsal Hippocampus: Stress, Depression, Dementia and Remote Hippocampal Damage // Neurochem. Res. 2019. V. 44. № 6. P. 1306–1322. https://doi.org/10.1007/s11064-018-2662-0.
- Hall S., Parr B.A., Hussey S. et al. The neurodegenerative hypothesis of depression and the influence of antidepressant medications // Eur. J. Pharmacol. 2024. V. 983. 176967. https://doi.org/10.1016/j.ejphar.2024.176967.
- He J., Xie P., An X.Q. et al. LncRNA NPTN-IT1-201 Ameliorates Depressive-like Behavior by Targeting miR-142-5p and Regulating Inflammation and Apoptosis via BDNF // Curr. Med. Sci. 2024. V. 44. № 5. P. 971–986. https://doi.org/10.1007/s11596-024-2917-8.
- Higuchi F., Uchida S., Yamagata H. et al. Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice // J. Neurosci. 2016. V. 36. № 27. P. 7253–7267. https://doi.org/10.1523/JNEUROSCI.0319-16.2016.
- Huan Z., Mei Z., Na H. et al. lncRNA MIR155HG Alleviates Depression-Like Behaviors in Mice by Regulating the miR-155/BDNF Axis // Neurochem. Res. 2021. V. 46. № 4. P. 935–944. https://doi.org/10.1007/s11064-021-03234-z.
- Huang C., Wang Y., Wu Z. et al. miR-98-5p plays a critical role in depression and antidepressant effect of ketamine // Transl. Psychiatry. 2021. V. 11. № 1. P. 454. https://doi.org/10.1038/s41398-021-01588-0.
- Huang P., Wei S., Luo M. et al. MiR-139-5p has an antidepressant-like effect by targeting phosphodiesterase 4D to activate the cAMP/PKA/CREB signaling pathway // Ann. Transl. Med. 2021. V. 9. № 20. P. 1594. https://doi.org/10.21037/atm-21-5149.
- Huang Y., Jin Y., Yao S., Nan G., Mao Y. LncRNA NEAT1 Inhibits Neuronal Apoptosis and Induces Neuronal Viability of Depressed Rats Via microRNA-320-3p/CRHR1 Axis // Neurochem. Res. 2024. V. 49. № 9. P. 2352–2363. https://doi.org/10.1007/s11064-021-03508-6.
- Huang Y.L., Zeng N.X., Chen J. et al. Dynamic changes of behaviors, dentate gyrus neurogenesis and hippocampal miR-124 expression in rats with depression induced by chronic unpredictable mild stress // Neural. Regen. Res. 2020. V. 15. № 6. P. 1150–1159. https://doi.org/10.4103/1673-5374.270414.
- Ilieva M.S. Non-Coding RNAs in Neurological and Neuropsychiatric Disorders: Unraveling the Hidden Players in Disease Pathogenesis // Cells. 2024. V. 13. № 12. P. 1063. https://doi.org/10.3390/cells13121063.
- Krishnan V., Nestler E.J. The molecular neurobiology of depression // Nature. 2008. V. 455. № 7215. P. 894–902. https://doi.org/10.1038/nature07455.
- Lan T., Li Y., Fan C. et al. MicroRNA-204-5p reduction in rat hippocampus contributes to stress-induced pathology via targeting RGS12 signaling pathway // J. Neuroinflammation. 2021. V. 18. № 1. P. 243. https://doi.org/10.1186/s12974-021-02299-5.
- Li C., Wang F., Miao P. et al. miR-138 Increases Depressive-Like Behaviors by Targeting SIRT1 in Hippocampus // Neuropsychiatr. Dis. Treat. 2020. V. 16. P. 949–957. https://doi.org/10.2147/NDT.S237558.
- Li S., Ma H., Yuan X. et al. MicroRNA-382-5p Targets Nuclear Receptor Subfamily 3 Group C Member 1 to Regulate Depressive-Like Behaviors Induced by Chronic Unpredictable Mild Stress in Rats // Neuropsychiatr. Dis. Treat. 2020. V. 16. P. 2053–2061. https://doi.org/10.2147/NDT.S243920.
- Li Y., Fan C., Wang L. et al. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies // J. Clin. Invest. 2021. V. 131. № 16. e148853. https://doi.org/10.1172/JCI148853.
- Li Y., Li S., Yan J. et al. miR-182 (microRNA-182) suppression in the hippocampus evokes antidepressant-like effects in rats // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016. V. 65. P. 96–103. 10.1016/j.pnpbp.2015.09.004.
- Li Y., Fan C., Gao R. et al. Hippocampal miR-211-5p regulates neurogenesis and depression-like behaviors in the rat // Neuropharmacology. 2021. V. 194. 108618. https://doi.org/10.1016/j.neuropharm.2021.108618.
- Lian N., Niu Q., Lei Y. et al. MiR-221 is involved in depression by regulating Wnt2/CREB/BDNF axis in hippocampal neurons // Cell. Cycle. 2018. V. 17. № 24. P. 2745–2755. https://doi.org/10.1080/15384101.2018.1556060.
- Liu C.P., Zhong M., Sun J.X. et al. miR-146a reduces depressive behavior by inhibiting microglial activation // Mol. Med. Rep. 2021. V. 23. № 6. P. 463. https://doi.org/10.3892/mmr.2021.12102.
- Liu Q., Sun N.N., Wu Z.Z., Fan D.H., Cao M.Q. Chaihu-Shugan-San exerts an antidepressive effect by downregulating miR-124 and releasing inhibition of the MAPK14 and Gria3 signaling pathways // Neural. Regen. Res. 2018. V. 13. № 5. P. 837–845. https://doi.org/10.4103/1673-5374.232478.
- Liu S., Liu Q., Ju Y., Liu L. Downregulation of miR-383 reduces depression-like behavior through targeting Wnt family member 2 (Wnt2) in rats // Sci. Rep. 2021. V. 11. № 1. P. 9223. https://doi.org/10.1038/s41598-021-88560-6.
- Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation // Signal Transduct. Target Ther. 2017. V. 2. 17023. https://doi.org/10.1038/sigtrans.2017.23.
- Lopizzo N., Zonca V., Cattane N., Pariante C.M., Cattaneo A. miRNAs in depression vulnerability and resilience: novel targets for preventive strategies // J. Neural. Transm. (Vienna). 2019. V. 126. № 9. P. 1241–1258. https://doi.org/10.1007/s00702-019-02048-2.
- Lou D., Wang J., Wang X. miR-124 ameliorates depressive-like behavior by targeting STAT3 to regulate microglial activation // Mol. Cell. Probes. 2019. V. 48. 101470. https://doi.org/10.1016/j.mcp.2019.101470.
- Lv M., Li J., Gao X., Hao Y., Zhao F. Decreased expression of microRNA-17 in hippocampal tissues and blood from mice with depression up-regulates the expression of PAI-1 mRNA and protein // Braz. J. Med. Biol. Res. 2020. V. 53. № 10. e8826. https://doi.org/10.1590/1414-431X20208826.
- Ma X., Li Q., Chen G. et al. Role of Hippocampal miR-132-3p in Modifying the Function of Protein Phosphatase Mg2+/Mn2+-dependent 1 F in Depression // Neurochem. Res. 2023. V. 48. № 8. P. 2514–2530. https://doi.org/10.1007/s11064-023-03926-8.
- Ma Z.Y., Chen F., Xiao P., Zhang X.M., Gao X.X. Silence of MiR-9 protects depression mice through Notch signaling pathway // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. № 11. P. 4961–4970. https://doi.org/10.26355/eurrev_201906_18087.
- Malhi G.S., Mann J.J. Depression // Lancet. 2018. V. 392. № 10161. P. 2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2.
- McEwen B.S. Physiology and neurobiology of stress and adaptation: central role of the brain // Physiol Rev. 2007. V. 87. № 3. P. 873–904. https://doi.org/10.1152/physrev.00041.2006.
- Mishima T., Mizuguchi Y., Kawahigashi Y., Takizawa T., Takizawa T. RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS // Brain Res. 2007. V. 1131. № 1. P. 37–43. https://doi.org/10.1016/j.brainres.2006.11.035.
- Młyniec K., Budziszewska B., Holst B., Ostachowicz B., Nowak G. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus // Int. J. Neuropsychopharmacol. 2014. V. 18. № 3. pyu002. https://doi.org/10.1093/ijnp/pyu002.
- Morris R., Kershaw N.J., Babon J.J. The molecular details of cytokine signaling via the JAK/STAT pathway // Protein Sci. 2018. V. 27. № 12. P. 1984–2009. https://doi.org/10.1002/pro.3519.
- Myers K.R., Yu K., Kremerskothen J., Butt E., Zheng J.Q. The Nebulin Family LIM and SH3 Proteins Regulate Postsynaptic Development and Function // J. Neurosci. 2020. V. 40. № 3. P. 526–541. https://doi.org/10.1523/JNEUROSCI.0334-19.2019.
- Pierouli K., Papageorgiou L., Mitsis T. et al. Role of microRNAs and long non-coding RNAs in glucocorticoid signaling (Review) // Int. J. Mol. Med. 2022. V. 50. № 6. P. 147. https://doi.org/10.3892/ijmm.2022.5203.
- Rahmani S., Kadkhoda S., Ghafouri-Fard S. Synaptic plasticity and depression: the role of miRNAs dysregulation // Mol. Biol. Rep. 2022. V. 49. № 10. P. 9759–9765. https://doi.org/10.1007/s11033-022-07461-7.
- Rashidi S.K., Kalirad A., Rafie S., Behzad E., Dezfouli M.A. The role of microRNAs in neurobiology and pathophysiology of the hippocampus // Front. Mol. Neurosci. 2023. V. 16. 1226413. https://doi.org/10.3389/fnmol.2023.1226413.
- Rastegar-Moghaddam S.H., Ebrahimzadeh-Bideskan A., Shahba S., Malvandi A.M., Mohammadipour A. Roles of the miR-155 in Neuroinflammation and Neurological Disorders: A Potent Biological and Therapeutic Target // Cell. Mol. Neurobiol. 2023. V. 43. № 2. P. 455–467. https://doi.org/10.1007/s10571-022-01200-z.
- Roy B., Dwivedi Y. An insight into the sprawling microverse of microRNAs in depression pathophysiology and treatment response // Neurosci. Biobehav. Rev. 2023. V. 146. 105040. https://doi.org/10.1016/j.neubiorev.2023.105040.
- Russell G., Lightman S. The human stress response // Nat. Rev. Endocrinol. 2019. V. 15. № 9. P. 525–534. https://doi.org/10.1038/s41574-019-0228-0.
- Schratt G.M., Tuebing F., Nigh E.A. et al. A brain-specific microRNA regulates dendritic spine development // Nature. 2006. V. 439. № 7074. P. 283–289. https://doi.org/10.1038/nature04367.
- Shen J., Zhang P., Li Y. et al. Neuroprotective effects of microRNA-211-5p on chronic stress-induced neuronal apoptosis and depression-like behaviours // J. Cell. Mol. Med. 2021. V. 25. № 14. P. 7028–7038. https://doi.org/10.1111/jcmm.16716.
- Shi L.S., Ji C.H., Tang W.Q. et al. Hippocampal miR-124 Participates in the Pathogenesis of Depression via Regulating the Expression of BDNF in a Chronic Social Defeat Stress Model of Depression // Curr. Neurovasc. Res. 2022. V. 19. № 2. P. 210–218. https://doi.org/10.2174/1567202619666220713105306.
- Shi Y., Wang Q., Song R., Kong Y., Zhang Z. Non-coding RNAs in depression: Promising diagnostic and therapeutic biomarkers // EBioMedicine. 2021. V. 71. 103569. https://doi.org/10.1016/j.ebiom.2021.103569.
- Shimba A., Ikuta K. Control of immunity by glucocorticoids in health and disease // Semin. Immunopathol. 2020. V. 42. № 6. P. 669–680. https://doi.org/10.1007/s00281-020-00827-8.
- Si L., Wang Y., Liu M., Yang L., Zhang L. Expression and role of microRNA-212/nuclear factor I-A in depressive mice // Bioengineered. 2021. V. 12. № 2. P. 11520–11532. https://doi.org/10.1080/21655979.2021.2009964.
- Slavich G.M., Irwin M.R. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression // Psychol. Bull. 2014. V. 140. № 3. P. 774–815. https://doi.org/10.1037/a0035302.
- Stepanichev M., Dygalo N.N., Grigoryan G., Shishkina G.T., Gulyaeva N. Rodent models of depression: Neurotrophic and neuroinflam-matory biomarkers // Biomed. Res. Int. 2014. V. 2014. 932757. https://doi.org/10.1155/2014/932757.
- Su M., Hong J., Zhao Y., Liu S., Xue X. MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA-132 in rats with depression // Mol. Med. Rep. 2015. V. 12. № 4. P. 5399–406. https://doi.org/10.3892/mmr.2015.4104.
- Sun Z., Zhan H., Wang C., Guo P. Shanzhiside methylester protects against depression by inhibiting inflammation via the miRNA-155-5p/SOCS1 axis // Psychopharmacology (Berl). 2022. V. 239. № 7. P. 2201–2213. https://doi.org/10.1007/s00213-022-06107-7.
- Taganov K.D., Boldin M.P., Chang K.J., Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses // Proc. Natl. Acad. Sci. U. S. A. 2006. V. 103. № 33. P. 12481–12486. https://doi.org/10.1073/pnas.0605298103.
- Tang M.M., Lin W.J., Zhang J.T., Zhao Y.W., Li Y.C. Exogenous FGF2 reverses depressive-like behaviors and restores the suppressed FGF2-ERK1/2 signaling and the impaired hippocampal neurogenesis induced by neuroinflammation // Brain Behav. Immun. 2017. V. 66. P. 322–331. https://doi.org/10.1016/j.bbi.2017.05.013.
- Tang Y., Yang J., Ye C. et al. miR-182 mediated the inhibitory effects of NF-κB on the GPR39/CREB/BDNF pathway in the hippocampus of mice with depressive-like behaviors // Behav. Brain Res. 2022. V. 418. 113647. https://doi.org/10.1016/j.bbr.2021.113647.
- Troubat R., Barone P., Leman S. et al. Neuro-inflammation and depression: A review // Eur. J. Neurosci. 2021. V. 53. № 1. P. 151–171. https://doi.org/10.1111/ejn.14720.
- Tsai S.J. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression // Oncotarget. 2017. V. 8. № 68. P. 113258–113268. https://doi.org/10.18632/oncotarget.19935.
- Vyas S., Rodrigues A.J., Silva J.M. et al. Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration // Neural Plast. 2016. V. 2016. 6391686. https://doi.org/10.1155/2016/6391686.
- Wang C., Li Y., Yi Y. et al. Hippocampal microRNA-26a-3p deficit contributes to neuroinflammation and behavioral disorders via p38 MAPK signaling pathway in rats // J. Neuroinflammation. 2022. V. 19. № 1. P. 283. https://doi.org/10.1186/s12974-022-02645-1.
- Wang G., Liu Y., Zhu X. et al. Knockdown of miRNA-134-5p rescues dendritic deficits by promoting AMPK-mediated mitophagy in a mouse model of depression // Neuropharmacology. 2022. V. 214. 109154. https://doi.org/10.1016/j.neuropharm.2022.109154.
- Wang S.S., Mu R.H., Li C.F. et al. microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017. V. 79. Pt B. P. 417–425. https://doi.org/10.1016/j.pnpbp.2017.07.024.
- Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage // Neurobiol. Stress. 2016. V. 6. P. 78–93. https://doi.org/10.1016/j.ynstr.2016.08.002.
- Woodbury M.E., Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration // J. Neuroimmune Pharmacol. 2014. V. 9. № 2. P. 92–101. https://doi.org/10.1007/s11481-013-9501-5.
- Wu X., Zhang Y., Wang P. et al. Clinical and preclinical evaluation of miR-144-5p as a key target for major depressive disorder // CNS Neurosci. Ther. 2023. V. 29. № 11. P. 3598–3611. https://doi.org/10.1111/cns.14291.
- Xian X., Cai L.L., Li Y. et al. Neuron secrete exosomes containing miR-9-5p to promote polarization of M1 microglia in depression // J. Nanobiotechnology. 2022. V. 20. № 1. P. 122. https://doi.org/10.1186/s12951-022-01332-w.
- Xin C., Xia J., Liu Y., Zhang Y. MicroRNA-202-3p Targets Brain-Derived Neurotrophic Factor and Is Involved in Depression-Like Behaviors // Neuropsychiatr. Dis. Treat. 2020. V. 16. P. 1073–1083. https://doi.org/10.2147/NDT.S241136.
- Yan X., Zeng D., Zhu H. et al. MiRNA-532-5p Regulates CUMS-Induced Depression-Like Behaviors and Modulates LPS-Induced Proinflammatory Cytokine Signaling by Targeting STAT3 // Neuropsychiatr. Dis. Treat. 2020. V. 16. P. 2753–2764. https://doi.org/10.2147/NDT.S251152.
- Yang W., Liu M., Zhang Q. et al. Knockdown of miR-124 Reduces Depression-like Behavior by Targeting CREB1 and BDNF // Curr. Neurovasc. Res. 2020. V. 17. № 2. P. 196–203. https://doi.org/10.2174/1567202617666200319141755.
- Yi L.T., Zhu J.X., Dong S.Q. et al. miR-34a induces spine damages via inhibiting synaptotagmin-1 in depression // Neurobiol. Stress. 2020. V. 13. 100243. https://doi.org/10.1016/j.ynstr.2020.100243.
- Yu H., Li X., Zhang Q. et al. miR-143-3p modulates depressive-like behaviors via Lasp1 in the mouse ventral hippocampus // Commun. Biol. 2024. V. 7. № 1. P. 944. https://doi.org/10.1038/s42003-024-06639-y.
- Zeng D., Shi Y., Li S. et al. miR-124 Exacerbates depressive-like behavior by targeting Ezh2 to induce autophagy. Behav. Pharmacol. 2023. V. 34. № 2–3. P. 131–140. https://doi.org/10.1097/FBP.0000000000000716.
- Zhai X., Liu J., Ni A., Ye J. MiR-497 promotes microglia activation and proinflammatory cytokines production in chronic unpredictable stress-induced depression via targeting FGF2 // J. Chem. Neuroanat. 2020. V. 110. 101872. https://doi.org/10.1016/j.jchemneu.2020.101872.
- Zheng Y.B., Sheng X.M., Jin X., Guan W. MiR-182-5p: A Novel Biomarker in the Treatment of Depression in CSDS-Induced Mice // Int. J. Neuropsychopharmacol. 2024. V. 27. № 1. pyad064. https://doi.org/10.1093/ijnp/pyad064.
- Zhou M., Wang M., Wang X. et al. Abnormal Expression of MicroRNAs Induced by Chronic Unpredictable Mild Stress in Rat Hippocampal Tissues. Mol. Neurobiol. 2018. V. 55. № 2. P. 917–935. https://doi.org/10.1007/s12035-016-0365-6.
Supplementary files
