Inhibitory interneuronal spinal cord network: organization and control of human voluntary movement and locomotion
- Authors: Gladchenko D.A.1, Chelnokov A.A.1, Bogdanov S.M.1, Roshchina L.V.1
-
Affiliations:
- Federal State Budgetary Educational Institution of Higher Education «Velikiye Luki State Academy of Physical Culture and Sports»
- Issue: Vol 56, No 2 (2025)
- Pages: 67-85
- Section: Articles
- URL: https://rjmseer.com/0301-1798/article/view/685810
- DOI: https://doi.org/10.31857/S0301179825020052
- EDN: https://elibrary.ru/TIXKEI
- ID: 685810
Cite item
Abstract
Any locomotor or arbitrary movement is basically the result of the convergence of simultaneous descending and ascending commands into the motor centers of the spinal cord. An important link in the processing of incoming signals are the so-called «segmental interneurons» or «local interneurons», whose high concentration at the spinal level forms an inhibition interneuronal network. The role of this interneuronal network is to filter signals from muscle spindles, tendons, joints, skin, as well as signals coming from the higher parts of the central nervous system. In the presented review, based on the experimental data obtained so far, special attention is paid to the population of interneurons that are part of reflex arcs and their role in the implementation of inhibitory processes at the motor and premotoneuronal levels of neuroaxis, as well as the participation of the inhibition interneuronal network in the formation of motor output parameters. The role of supraspinal and suprasegmental mechanisms of neuromodulation of inhibitory interneuronal networks of the spinal cord in providing motor control is revealed.
Keywords
Full Text

About the authors
D. A. Gladchenko
Federal State Budgetary Educational Institution of Higher Education «Velikiye Luki State Academy of Physical Culture and Sports»
Author for correspondence.
Email: gladchenko84@outlook.com
Russian Federation, Velikiye Luki, 182105
A. A. Chelnokov
Federal State Budgetary Educational Institution of Higher Education «Velikiye Luki State Academy of Physical Culture and Sports»
Email: and-chelnokov@yandex.ru
Russian Federation, Velikiye Luki, 182105
S. M. Bogdanov
Federal State Budgetary Educational Institution of Higher Education «Velikiye Luki State Academy of Physical Culture and Sports»
Email: turbon10@yandex.ru
Russian Federation, Velikiye Luki, 182105
L. V. Roshchina
Federal State Budgetary Educational Institution of Higher Education «Velikiye Luki State Academy of Physical Culture and Sports»
Email: ljudaroschina@yandex.ru
Russian Federation
References
- Бабанов Н.Д., Бирюкова Е.А. Нейрофизиологическое обеспечение моторного контроля в «гибридных» позах. Обзор литературы // Сенсорные системы. 2021. Т. 35. № 2. С. 91–102. https://doi.org/10.31857/S0235009221020025
- Богданов С.М., Гладченко Д.А., Рощина Л.В., Челноков А.А. Эффект супраспинальных влияний на проявление пресинаптического торможения Ia афферентов при разных типах мышечного сокращения у человека // Вестн. РУДН. Сер. Мед. 2020. Т. 24. № 4. С. 338–344. https://doi.org/10.22363/2313-0245-2020-24-4-338-344
- Гладченко Д.А., Богданов С.М., Рощина Л.В., Челноков А.А. Функциональная активность реципрокного торможения α-мотонейронов мышц-антагонистов голени при разных типах мышечного сокращения субмаксимальной и максимальной силы // Рос. мед.-биол. вестн. 2023. Т. 31. № 2. С. 185–194. https://doi.org/10.17816/PAVLOVJ110739
- Гладченко Д.А., Алексеева И.В., Челноков А.А., Барканов М.Г. Моделирование импульсной активности афферентных волокон мышц-антагонистов голени при чрескожной электрической стимуляции спинного мозга во время ходьбы // Физиол. человека. 2024. Т. 50. № 1. C. 34–44. https://doi.org/10.31857/S0131164624010035
- Гладченко Д.А., Богданов С.М., Челноков А.А. Влияние приема Ендрассика и решения арифметических задач на возбудимость α-мотонейронов при удержании различно по величине статического усилия // Современные векторы прикладных исследований в сфере физической культуры и спорта: Сборник научных статей II Международной научно-практической конференции для молодых ученых, аспирантов, магистрантов и студентов. Под редакцией А.В. Сысоева [и др.]. Воронеж, 2021. С. 106–109.
- Гордеев С.А. Боль: классификация, структурно-функциональная организация ноцицептивной и антиноцицептивной систем, электронейромиографические методы исследования // Успехи физиол. наук. 2019. T. 50. № 4. С. 87–104. https://doi.org/10.1134/S0301179819040039
- Королев А.А. Функциональная анатомия нисходящих двигательных систем в норме и при формировании спастического пареза // Фундаментальные исследования. 2013. № 3. С. 91–96. URL: https://fundamental-research.ru/ru/article/view?id=31153 (дата обращения: 02.07.2024
- Любашина О.А., Сиваченко И.Б., Бусыгина И.И. Особенности нейрофизиологических механизмов висцеральной и соматической боли // Успехи физиол. наук. 2022. Т. 53. № 2. С. 3–14. https://doi.org/10.31857/S0301179822020072
- Мошонкина Т.Р., Погольская М.А., Виноградская З.В., Лихачева П.К., Герасименко Ю.П. Чрескожная электрическая стимуляция спинного мозга в двигательной реабилитации пациентов с травмой спинного мозга // Интегративная физиология. 2020. Т. 1. № 4. С. 351–365. https://doi.org/10.33910/2687-1270-2020-1-4-350-364
- Нарышкин А.Г., Галанин И.В., Егоров А.Ю. Управляемая нейропластичность // Физиол. человека. 2020. Т. 46. № 2. С. 112–120. https://doi.org/10.31857/S0131164620020101
- Рощина Л.В., Гладченко Д.А., Пивоварова Е.А., Челноков А.А. Эффект длительной электрической стимуляции спинного мозга на проявления нереципрокного торможения α-мотонейронов скелетных мышц человека // Вестн. РУДН. Сер. Мед. 2019. Т. 23. № 4. С. 390–396. https://doi.org/10.22363/2313-0245-2019-23-4-390-396
- Савенкова А.А., Сарана А.М., Щербак С.Г., Герасименко Ю.П., Мошонкина Т.Р. Неинвазивная электрическая стимуляция спинного мозга в комплексной реабилитации больных со спинномозговой травмой // Вопр. курорт., физиотерапии и лечеб. физ. культуры. 2019. Т. 96. № 5. С. 11–18. https://doi.org/10.17116/kurort20199605111
- Столбков Ю.К., Герасименко Ю.П. Пластические изменения, индуцированные двигательной активностью, при повреждениях спинного мозга // Успехи физиол. наук. 2022. Т. 53. № 4. С. 27–39. https://doi.org/10.31857/S0301179822040063
- Челноков А.А., Рощина Л.В., Гладченко Д.А. и др. Эффект чрескожной электрической стимуляции спинного мозга на функциональную активность спинального торможения в системе мышц-синергистов голени у человека // Физиол. человека. 2022. Т. 48. № 2. С. 14–27. https://doi.org/10.31857/S0131164622020035
- Челноков А.А., Городничев Р.М. Возрастные особенности формирования спинального торможения скелетных мышц у лиц мужского пола // Физиол. чел. 2015. Т. 41. № 6. С. 86. https://doi.org/10.7868/S0131164615060028
- Челноков А.А., Городничев Р.М. Закономерности формирования спинального торможения у человека // Москва. ИНФРА-М, 2020. 192 с. https://doi.org/10.12737/1039428
- Agarwal G.C., Gottlieb G.L. The Muscle Silent Period and Reciprocal Inhibition in Man // J Neurol., Neurosurg., and Psychiatry. 1972. V. 35. № 1. P. 72–76. https://doi.org/10.1136/jnnp.35.1.72
- Alston W., Angel R.W., Fink F.S., Hofmann W.W. Motor activity following the silent period in human muscle // J Physiol. 1967. V. 190. № 1. Р. 189–202. https://doi.org/10.1113/jphysiol.1967.sp008201
- Armstrong S.A., Herr M.J. Physiology Nociception // S.A. Armstrong, – Treasure Island (FL): StatPearls Publishing 2022. URL: https://www.ncbi.nlm.nih.gov/books/NBK551562/ (дата обращения:02.05.2024).
- Barrué-Belou S., Marque P., Duclay J. Supraspinal Control of Recurrent Inhibition during Anisometric Contractions // Med Sci Sports Exerc. 2019. V. 51. № 11. P. 2357–2365. https://doi.org/10.1249/MSS.0000000000002042
- Barrue-Belou S., Marque P., Duclay J. Recurrent inhibition is higher in eccentric compared to isometric and concentric maximal voluntary contractions // Acta Physiol. 2018. V. 223. № 4. 13064. https://doi.org/10.1111/apha.13064
- Baudry S., Duchateau J. Age-related influence of vision and proprioception on Ia presynaptic inhibition in soleus muscle during upright stance // J. Physiol. 2012. V. 590. № 21. P. 5541–5554. https://doi.org/10.1113/jphysiol.2012.228932
- Bikmullina R., Baumer T., Zittel S., Munchau A. Sensory afferent inhibition within and between limbs in humans // Clin. Neurophysiol. 2009. V. 120. № 3. P. 610–618. https://doi.org/10.1016/j.clinph.2008.12.003
- Bikmullina R.Kh., Rozental' N., Pleshchinskii I.N. Inhibitory systems of the spinal cord in the control of interactions of functionally coupled muscles // Hum. Physiol. 2007. V. 33. № 1. P. 105–115. https://doi.org/10.1134/S0362119707010173
- Bringman C.L., Shields R.K., DeJong S.L. Corticospinal modulation of vibration-induced H-reflex depression // Exp Brain Res. 2022. V. 240. № 3. P. 803–812. https://doi.org/10.1007/s00221-022-06306-w .
- Bussel B., Pierrot-Deseilligny E. Inhibition of human motoneurones, probably of Renshaw origin, elicited by an orthodromic motor discharge // J. Physiol. (Lond.). 1977. V. 269. P. 319–339. https://doi.org/10.1113/jphysiol.1977.sp011904
- Chelnokov A.A., Gladchenko D.A., Fedorov S.A., Gorodnichev R.M. Age-related parameters of spinal inhibition of skeletal muscles in regulation of voluntary movements in men // Hum. Physiol. 2017. V. 43. № 1. P. 28–36. https://doi.org/10.1134/S0362119716060062
- Chelnokov A.A., Buchatskaya I.N. Funcitonal features spinal inhibition during voluntary motor activity // Theory and Practice of Physical Culture. 2015. № 6. С. 1–4.
- Comitato A., Bardoni R. Presynaptic Inhibition of Pain and Touch in the Spinal Cord: From Receptors to Circuits. Int. J. Mol. Sci. 2021. V. 22. № 1. P. 414. https://doi.org/10.3390/ijms22010414
- Côté M.P., Murray L.M., Knikou M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions // Front Physiol. 2018. V. 25. № 9. P. 784. https://doi.org/10.3389/fphys.2018.00784
- Crone C., Nielsen J. Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot // J. Physiol. 1989b. V. 416. P. 255–272. https://doi.org/10.1113/jphysiol.1989.sp017759
- Dlamini M. Spinal cord pathways // South Afr J Anaesth Analg. 2020. V. 26. P. 40–44. https://doi.org/10.36303/SAJAA.2020.26.6.S3.2535
- Dragert K., Zehr E.P. Differential modulation of reciprocal inhibition in ankle muscles during rhythmic arm cycling // Neurosci Lett. 2013. V. 534. P. 269–73. https://doi.org/10.1016/j.neulet.2012.11.038
- Drew T., Marigold D.S. Taking the next step: cortical contributions to the control of locomotion // Curr. Opin. Neurobiol. 2015. V. 33. P. 25–33. https://doi.org/10.1016/j.conb.2015.01.011
- Dubuc R., Brocard F., Antri M. et al. Initiation of locomotion in lampreys // Brain Res Rev. 2008. V. 57. № 1. Р. 172–182. https://doi.org/10.1016/j.brainresrev.2007.07.016
- Duchateau J., Enoka R.M. Neural control of lengthening contractions // J Exp Biol. 2016. V. 219. № 2. Р. 197–204. https://doi.org/10.1242/jeb.123158
- Duysens J., Pearson K.G. Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats // Brain Res. 1980. V. 187. № 2. P. 321–332. https://doi.org/10.1016/0006-8993(80)90206-1
- Eccles J.C., Fatt P., Landgren S. The central pathway for the direct inhibitory action of impulses in the largest afferent nerve fibers to muscle // J. Neurophysiol. 1956. V. 19. P. 75–98. https://doi.org/10.1152/jn.1956.19.1.75
- Eguibar J.R., Quevedo J., Jiménez I., Rudomin P. Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber // Brain Res. 1994. V. 643. P. 328–333. https://doi.org/10.1016/0006-8993(94)90042-6
- Faist M., Dietz V., Pierrot-Deseilligny E. Modulation, probably presynaptic in origin, of monosynaptic Ia excitation during human gait // Exp Brain Res. 1996. V. 109. № 3. Р. 441–449. https://doi.org/10.1007/BF00229628
- Faist M., Hoefer C., Hodapp M. et al. In humans Ib facilitation depends on locomotion while suppression of Ib inhibition requires loading // Brain Res. 2006. V. 1076. P. 87–92. https://doi.org/10.1016/j.brainres.2005.12.069
- Frank K.A., Fuortes M. Presynaptic and postsynaptic inhibition of monosynaptic reflexes // Federat Proc. 1957. V. 16. P. 39. https://doi.org/10.1136/jnnp.49.8.937
- Fujito Y., Aoki M. Monosynaptic rubrospinal projections to distal forelimb motoneurons in the cat // Exp. Brain Res. 1995. V. 105. № 2. P. 181. https://doi.org/10.1007/BF00240954
- Fung J., Barbeau H. Effects of cutaneomuscular stimulation on the soleus H-reflex in normal and spastic paretic subjects during walking and standing // J. Neuriphysiol. 1994. V. 72. № 5. P. 2090–2104. https://doi.org/10.1152/jn.1994.72.5.2090
- Gervasio S., Voigt M., Kersting U.G. et al. Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking // PLoS ONE. 2017. V. 12. № 1. 0168557. https://doi.org/10.1371/journal.pone.0168557
- Gladchenko D.A., Roshchina L.V., Bogdanov S.M., Chelnokov A.A. Effect of transcutaneous electrical spinal cord stimulation on the functional activity of reciprocal and presynaptic inhibition in healthy subjects // RusOMJ. 2022. V. 11. № 3. P. 302. https://doi.org/10.15275/rusomj.2022.0302
- Goulart F., Valls-Sole J. Reciprocal changes of excitability between tibialis anterior and soleus during the sat-to-stand movement // Exp Brain Res. 2001. V. 139. № 4. P. 391. https://doi.org/10.1007/s002210100771
- Goulding M., Bourane S., Garcia-Campmany L., Dalet A., Koch S. Inhibition downunder: An update from the spinal cord // Curr Opin Neurobiol. 2014. V. 26. P. 161–166. https://doi.org/10.1016/j.conb.2014.03.006
- Grillner S., Robertson B. The basal ganglia downstream control of brainstem motor centres – an evolutionarily conserved strategy // Curr. Opin. Neurobiol. 2015. V. 33. P. 47–52. https://doi.org/10.1016/j.conb.2015.01.019
- Grosprêtre S., Duclay A., Martin S. Assessment of Homonymous Recurrent Inhibition during Voluntary Contraction by Conditioning Nerve Stimulation // PLoS ONE. 2016. V. 11. № 11. 0167062. https://doi.org/10.1371/journal.pone.0167062
- Guo D., Hu J. Spinal presynaptic inhibition in pain control // Neurosci. V. 283. P. 95–106. https://doi.org/10.1016/j.neuroscience.2014.09.032
- Guzmán-López J., Costa J., Selvi A. et al. The effects of transcranial magnetic stimulation on vibratory-induced presynaptic inhibition of the soleus H reflex // Exp Brain Res. 2012. V. 220. № 3–4. P. 223–230. https://doi.org/10.1007/s00221-012-3131-7
- Hanna-Boutros B., Sangari S., Giboin L.S. et al. Corticospinal and reciprocal inhibition actions on human soleus motoneuron activity during standing and walking // Physiol Rep. 2015. V. 3. № 2. 12276. https://doi.org/10.14814/phy2.12276
- Haridas C., Zehr E.P. Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking // J Neurophysiol. 2003. V. 90. № 5. Р. 2850–2861. https://doi.org/10.1152/jn.00531.2003
- Hirabayashi R., Edama M., Kojima S., Miyaguchi S., Onishi H. Effects of repetitive passive movement on ankle joint on spinal reciprocal inhibition // Exp Brain Res. 2019. V. 237. P. 3409–3417. https://doi.org/10.1007/s00221-019-05689-7
- Hirabayashi R., Edama M., Kojima S., Miyaguchi S., Onishi H. Enhancement of spinal reciprocal inhibition depends on the movement speed and range of repetitive passive movement // Eur J. Neurosci. 2020. V. 52. № 8. P. 3929–3943. https://doi.org/10.1111/ejn.14855
- Hirabayashi R., Kojima S., Edama M., Onishi H. Activation of the Supplementary Motor Areas Enhances Spinal Reciprocal Inhibition in Healthy Individuals // Brain Sci. 2020. V. 10. № 9. P. 587. https://doi.org/10.3390/brainsci10090587
- Hultborn H., Meunier S., Morin C., Pierrot-Deseilligny E. Assessing changes in presynaptic inhibition of Ia fibres: a study in man and the cat // J. Physiol. 1987. V. 389. P. 729–756. https://doi.org/10.1113/jphysiol.1987.sp016680
- Iles J.F. Seeking functions for spinal recurrent inhibition // J. Physiol. 2008. V. 586. № 24. P. 5843. https://doi.org/10.1113/jphysiol.2008.165373
- Iles J.F., Ali A., Pardoe J. Task-related changes of transmission in the pathway of heteronymous spinal recurrent inhibition from soleus to quadriceps motor neurones in man // Brain. 2000. V. 123. P. 2264–2272. https://doi.org/10.1093/brain/123.11.2264
- Iles J.F., Baderin R., Tanner R., Simon A. Human standing and walking: comparison of the effects of stimulation of the vestibular system // Exp Brain Res. 2007. V. 178. P. 151–166. https://doi.org/10.1007/s00221-006-0721-2
- Iles J.F., Stokes M., Young A. Reflex actions of knee joint afferents during contraction of the human quadriceps // Clin. Physiol. 1990. V. 10. P. 489–500. https://doi.org/10.1111/j.1475-097x.1990.tb00828.x
- Islam M.A., Pulverenti T.S., Knikou M. Neuronal Actions of Transspinal Stimulation on Locomotor Networks and Reflex Excitability During Walking in Humans With and Without Spinal Cord Injury // Front. Hum. Neurosci. 2021. V. 15. е620414. https://doi.org/10.3389/fnhum.2021.620414
- Jankowska E. Basic principles of processing of afferent information by spinal interneurons. J Neurophysiol. 2022. V. 128. № 3. P. 689–695. https://doi.org/10.1152/jn.00344.2022
- Jankowska E. Interneuronal relay in spinal pathways from proprioceptors // Prog. Neurobiol. 1992. V. 38. Р. 335–378. https://doi.org/10.1016/0301-0082(92)90024-9
- Jankowska E. Spinal interneurons, in Neuroscience in the 21st Century, eds D.W. Pfaff and N.D. Volkow. New York, Springer Science+Business Media. 2016a. Р. 1189–1224. https://doi.org/10.1007/978-1-4939-3474-4_34
- Jankowska E. Spinal reflexes, in Neuroscience in the 21 Century, eds D.W. Pfaff and N.D. Volkow. New York, NY: Springer Science+Business Media. 2016b. Р. 1599–1621. https://doi.org/10.1007/978-1-4939-3474-4_50
- Jankowska E., Edgley S.A. Functional subdivision of feline spinal interneurons in reflex pathways from group Ib and II muscle afferents; an update // Eur J Neurosci. 2010. V. 32. № 6. P. 881–893. https://doi.org/10.1111/j.1460-9568.2010.07354.x
- Jessop T., De Paola A., Casaletto L., Englard C., Knikou M. Short-term plasticity of human spinal inhibitory circuits after isometric and isotonic ankle training // Eur J Appl Physiol. 2013. V. 113. № 2. P. 273–284. https://doi.org/10.1007/s00421-012-2438-1
- Katz R., Pierrot-Deseilligny E. Recurrent inhibition in humans // Prog. Neurobiol. 1998. V. 57. P. 325–355. https://doi.org/10.1016/s0301-0082(98)00056-2
- Kitano K., Tsuruike M., Robertson C.T., Koceja D.M. Effects of a complex balance task on soleus H-reflex and presynaptic inhibition in humans // Electromyogr Clin Neurophysiol. 2009. V. 49. № 5. P. 235–243. URL: https://pubmed.ncbi.nlm.nih.gov/19694211/ (дата обращения: 02.05.2024)
- Knikou M. Plantar cutaneous afferents normalize the reflex modulation patterns during stepping in chronic human spinal cord injury // J. Neurophysiology. 2010. V. 103. № 3. Р. 1304. https://doi.org/10.1152/jn.00880.2009
- Knikou M. Plasticity of corticospinal neural control after locomotor training in human spinal cord injury // Neural Plast. 2012. V. 2012. 254948. https://doi.org/10.1155/2012/254948
- Knikou M., Smith A.C., Mummidisetty C.K. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury // J Neurophysiol. 2015. V. 113. № 7. P. 2447–2460. https://doi.org/10.1152/jn.00872.2014
- Knikou M., Mummidisetty C.K. Locomotor training improves premotoneuronal control after chronic spinal cord injury // J Neurophysiol. 2014. V. 111. № 11. P. 2264–2275. https://doi.org/10.1152/jn.00871.2013
- Koch S.C. Motor task-selective spinal sensorimotor interneurons in mammalian circuits // Curr. Opin. Physiol. 2019. V. 8. P. 129–135. https://doi.org/10.1016/j.cophys.2019.01.014
- Krotov V., Agashkov K., Romanenko S. et al. Elucidating afferent-driven presynaptic inhibition of primary afferent input to spinal laminae I and X // Front. Cell. Neurosci. 2022. V. 16. P. 1029799 https://doi.org/10.3389/fncel.2022.1029799
- Krotov V., Agashkov K., Krasniakova M. Segmental and descending control of primary afferent input to the spinal lamina X // J. Pain. 2022. V. 163. № 10. P. 2014–2020. https://doi.org/10.1097/j.pain.0000000000002597
- Kubota S., Hirano M., Morishita T., Uehara K., Funase K. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons // Neuroreport. 2015. V. 26. № 5. P. 249–253. https://doi.org/10.1097/WNR.0000000000000335
- Kubota S., Uehara K., Morishita T., Hirano M., Funase K. Inter-individual variation in reciprocal Ia inhibition is dependent on the descending volleys delivered from corticospinal neurons to Ia interneurons // J Electromyogr Kinesiol. 2014. V. 24. № 1. P. 46–51. https://doi.org/10.1016/j.jelekin.2013.11.004
- Labrecque C., Bélanger M. The effects of low intensity cutaneous stimulation on the H-reflex modulation during static and dinamic cycling movements // Dept de Kinanthropologie Society for neurosciens abstracts. 1994. V. 20. № 715. Р. 7.
- Lamy J.C., Iglesias C., Lackmy A. et al. Modulation of recurrent inhibition from knee extensors to ankle motoneurones during human walking // J. Physiol. 2008. V. 586. № 24. P. 5931–5946. https://doi.org/10.1113/jphysiol.2008.160630
- Lemon R.N. Descending pathways in motor control // Annu. Rev. Neurosci. 2008. V. 31. Р. 195–218. https://doi.org/10.1146/annurev.neuro.31.060407.125547
- Lopez A.J., Xu J., Hoque M.M. et al. Integration of Convergent Sensorimotor Inputs Within Spinal Reflex Circuits in Healthy Adults // Front. Hum. Neurosci. 2020. V. 14. 592013. https://doi.org/10.3389/fnhum.2020.592013
- Löscher W.N., Cresswell A.G., Thorstensson A. Recurrent inhibition of soleus α-motoneurons during a sustained submaximal plantar flexion // Electroencephalogr. Clin. Neurophysiol. 1996. V. 101. P 334–338. https://doi.org/10.1016/0924-980x(96)95670-2
- Madsen L.P., Kitano K., Koceja D.M., Zehr E.P., Docherty C.L. Modulation of cutaneous reflexes during sidestepping in adult humans // Exp. Brain Res. 2020. V. 238. № 10. P. 2229–2243. https://doi.org/10.1007/s00221-020-05877-w
- Marchand-Pauvert V., Nielsen J.B. Modulation of heteronymous reflexes from ankle dorsiflexors to hamstring muscles during human walking // Exp. Brain Res. 2002. V. 142. № 3. Р. 402–408. https://doi.org/10.1007/s00221-001-0942-3
- Marque P., Nicolas G., Simonetta-Moreau M., Pierrot-Deseilligny E., Marchand-Pauvert V. Group II excitations from plantar foot muscles to human leg and thigh motoneurones // Exp. Brain Res. 2005. V. 161. P. 486–501. https://doi.org/10.1007/s00221-004-2096-6
- Matsugi A., Mori N., Uehara S. et al. Effect of cerebellar transcranial magnetic stimulation on soleus Ia presynaptic and reciprocal inhibition // Neuroreport. 2015. V. 26. № 3. P. 139–143. https://doi.org/10.1097/WNR.0000000000000315
- Matthews P.B.C. The human stretch reflex and the motor cortex // Trends Neurosci. 1991. V. 14. P. 87–121. https://doi.org/10.1016/0166-2236(91)90064-2
- Mazzocchio R., Rossi A., Rothwell J.C. Depression of Renshaw recurrent inhibition by activation of corticospinal fibres in human upper and lower limb // J Physiol. 1994. V. 481. P. 487–98. https://doi.org/10.1113/jphysiol.1994.sp020457
- Meunier S. Modulation by corticospinal volleys of presynaptic inhibition to Ia afferents in man // J Physiol Paris. 1999. V. 93. № 4. Р. 387–394. https://doi.org/10.1016/s0928-4257(00)80066-2
- Meunier S., Pierrot-Deseilligny E. Gating of the afferent volley of the monosynaptic stretch reflex during movement in man // J. Physiol. (Lond.). 1989. V. 419. P. 753–763. https://doi.org/10.1113/jphysiol.1989.sp017896
- Mummidisetty C.K., Smith A.C., Knikou M. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans // Clin. Neurophysiol. 2013. V. 124. P. 557–564. https://doi.org/10.1016/j.clinph.2012.09.007
- Mynark R.G. Modulation of Renshaw cell activity from supine to standing // Int. J. Neurosci. 2005. V. 115. P. 35–46. https://doi.org/10.1080/00207450490512632
- Nakagawa K., Kakehata G., Kaneko N. et al. Reciprocal inhibition of the thigh muscles in humans: A study using transcutaneous spinal cord stimulation // Physiol. Rep. 2024. V. 12. № 9. 16039. https://doi.org/10.14814/phy2.16039
- Nichols TR. Distributed force feedback in the spinal cord and the regulation of limb mechanics // J. Neurophysiol. 2018. V. 119. № 3. P. 1186–1200. https://doi.org/10.1152/jn.00216.2017
- Nielsen J., Pierrot-Deseilligny E. Evidence of facilitation of soleus-coupled Renshaw cell during voluntary co-contraction of antagonist ankle muscles in man // J. Physiol. (Lond). 1996. P. 603–611. https://doi.org/10.1113/jphysiol.1996.sp021407
- Özyurt M.G., Piotrkiewicz M., Topkara B., Weisskircher H.W., Türker K.S. Motor units as tools to evaluate profile of human Renshaw inhibition // J Physiol. 2019. V. 597. № 8. P. 2185–2199. https://doi.org/10.1113/JP277129
- Papitsa A., Paizis C., Papaiordanidou M., Martin A. Specific modulation of presynaptic and recurrent inhibition of the soleus muscle during lengthening and shortening submaximal and maximal contractions // J Appl Physiol. 2022. V. 133. № 6. P. 1327–1340. https://doi.org/10.1152/japplphysiol.00065.2022
- Perez M.A., Lungholt B.K., Nielsen J.B. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans // J Physiol. 2005. V. 568. № 1. P. 343–54. https://doi.org/10.1113/jphysiol.2005.089904
- Pierrot-Deseilligny E. Assessing changes in presynaptic inhibition of Ia afferents during movement in humans // J Neurosci Methods. 1997. V. 74. № 2. Р. 189–199. https://doi.org/10.1016/s0165-0270(97)02249-8
- Pierrot-Deseilligny E., Bergego C., Katz R. Reversal in cutaneous control of Ib pathways during human voluntary contraction // Brain Res. 1982. V. 233. № 2. P. 400–403. https://doi.org/10.1016/0006-8993(82)91213-6
- Pierrot-Deseilligny E., Burke D. The Circuitry of the Human Spinal Cord: Spinal and Corticospinal Mechanisms of Movement. Cambridge University Press. United States. 2012. 606 р.
- Pierrot-Deseilligny E., Katz R., Morin C. Evidence for Ib inhibition in human subjects // Brain Res. 1979. V. 166. P. 176–179. https://doi.org/10.1016/0006-8993(79)90660-7
- Pierrot-Deseilligny E., Morin C., Bergego C., Tankov N. Pattern of group I fibre projections from ankle flexor and extensor muscle in man // Exp Brain Res. 1981. V. 42. P. 337–350. https://doi.org/10.1007/BF00237499
- Ramírez-Morales A., Hernández E., Rudomin P. Nociception induces a differential presynaptic modulation of the synaptic efficacy of nociceptive and proprioceptive joint afferents // Exp. Brain Res. 2021. V. 239. P. 2375–2397. https://doi.org/10.1007/s00221-021-06140-6
- Renshaw B. Influence of discharge of motoneurons upon excitation of neighboring motoneurons // J. Neurophysiol. 1941. V. 4. Р. 167. https://doi.org/10.1152/jn.1941.4.2.167
- Rossi A., Decchi B. Changes in Ib heteronymous inhibition to soleus motoneurons during cutaneous and muscle nociceptive stimulation in humans // Brain Res. 1997. V. 774. P. 55–61. https://doi.org/10.1016/s0006-8993(97)81687-3
- Rossi A., Decchi B., Ginanneschi F. Presynaptic excitability changes of group Ia fibres to muscle nociceptive stimulation in humans // Brain Res. 1999. V. 818. № 1. P. 12–22. https://doi.org/10.1016/s0006-8993(98)01253-0
- Rossi A., Mazzocchio R. Cutaneous control of group I pathways from ankle flexors to extensors in man // Exp. Brain Res. 1988. V. 73. № 1. P. 8–14. https://doi.org/10.1007/BF00279655
- Rossi A., Mazzocchio R. Influence of different static head-body positions on spinal lumbar interneurons in man: the role of the vestibular system // ORL J Otorhinolaryngol Relat Spec. 1988. V. 50. № 2. P. 119–126. https://doi.org/10.1159/000275979
- Rossi A., Mazzocchio R., Decchi B. Effect of chemically activated fine muscle afferents on spinal recurrent inhibition in humans // Clin. Neurophysiol. 2003. V. 114. № 2. P. 279–287. https://doi.org/10.1016/s1388-2457(02)00334-6
- Rossignol S., Dubuc R., Gossard J.P. Dynamic sensorimotor interactions in locomotion // Physiol Rev. 2006. V. 86. № 1. Р. 89–154. https://doi.org/10.1152/physrev.00028.2005
- Rudomin P. In search of lost presynaptic inhibi-tion // Exp. Brain Res. 2009. V. 196. P. 139–151. https://doi.org/10.1007/s00221-009-1758-9
- Rudomin P. Selectivity of the central control of sensory information in the mammalian spinal cord // Adv. Exp. Med. Biol. 2002. V. 508. P. 157–170. https://doi.org/10.1007/978-1-4615-0713-0_19
- Rudomin P., Lomelí J., Quevedo J. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord // Exp. Brain Res. 2004. V. 156. P. 377–391. https://doi.org/10.1007/s00221-003-1788-7
- Schieppati M., Nardone A. Group II spindle afferent fibers in humans: their possible role in the reflex control of stance // Prog. Brain Res. 1999. V. 123. Р. 461–472. https://doi.org/10.1016/s0079-6123(08)62882-4
- Sengupta M., Bagnall M.W. Spinal Interneurons: Diversity and Connectivity in Motor Control // Annu Rev Neurosci. 2023. V. 46. P. 79–99. https://doi.org/10.1146/annurev-neuro-083122-025325
- Smit A.C., Knikou M.A. Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function // Neural. Plasticity. 2016. V. 2016. Р. 20. https://doi.org/10.1155/2016/1216258
- Stachowski N.J., Dougherty K.J. Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways // Int. J. Mol Sci. 2021. V. 22. № 5. P. 2667. https://doi.org/10.3390/ijms22052667
- Stephens M.J., Yang J.F. Short-latency, non-reciprocal group I inhibition is reduced during the stance phase on walking humans // Brain Res. 1996. V. 743. № 1–2. P. 24–31. https://doi.org/10.1016/s0006-8993(96)00977-8
- Suzuki S., Nakajima T., Futatsubashi G. et al. Phase-dependent reversal of the crossed conditioning effect on the soleus Hoffmann reflex from cutaneous afferents during walking in humans // Exp Brain Res. 2016. V. 234. № 2. Р. 617–626. https://doi.org/10.1007/s00221-015-4463-x
- Takakusaki K. Functional Neuroanatomy for Posture and Gait Control // J. Mov. Disord. 2017. V. 10. № 1. P. 1–17. https://doi.org/10.14802/jmd.16062
- Willis W.D. John Eccles’ studies of spinal cord presynaptic inhibition // Prog Neurobiol. 2006. V. 78. P. 189–214. https://doi.org/10.1016/j.pneurobio.2006.02.007
- Windhorst U. Muscle proprioceptive feedback and spinal networks // Brain Res Bull. 2007. V. 73. № 4–6. P. 155–202. https://doi.org/10.1016/j.brainresbull.2007.03.010
- Yavuz U.S., Negro F., Diedrichs R. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans // J Neurophysiol. 2018. V. 119. P. 1699–1706. https://doi.org/10.1152/jn.00424.2017
- Zavvarian M.-M., Hong J., Fehlings M.G. The Functional Role of Spinal Interneurons Following Traumatic Spinal Cord Injury // Front. Cell. Neurosci. 2020. V. 14. P. 127. https://doi.org/10.3389/fncel.2020.00127
- Zehr E.P. Considerations for use of the Hoffmann reflex in exercise studies // Eur. J. Appl. Physiol. 2002. V. 86. P. 455–468. https://doi.org/10.1007/s00421-002-0577-5
Supplementary files
