Numerical modeling of elastic wave phenomena by grid-characteristic method on chimera computational meshes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Nowadays, the solution of applied problems of seismic exploration and ultrasonic non-destructive testing is accompanied by the use of computer simulation. This poses a challenge for scientists to develop new modifications of numerical methods that allow increasing the accuracy of calculations while minimizing the cost of computing resources. Unlike numerical methods on unstructured computational grids, the use of Chimera computational grids (or superimposed ones, or adaptive ones) also allows describing boundaries and contact boundaries of arbitrary shape, but at the same time spending less RAM and time on calculations. This is especially important in connection with the active use of neural networks for solving inverse problems, since when generating training samples, both the accuracy of modeling and the speed of calculations and the amount of RAM spent are important. The paper considers and compares various modifications of the grid-characteristic method on Chimera computational grids. Examples of test calculations are given.

Авторлар туралы

A. Favorskaya

Moscow Institute of Physics and Technology; Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”; Innopolis University

Хат алмасуға жауапты Автор.
Email: aleanera@yandex.ru
Dolgoprudny, Moscow region, 141701 Russia; Moscow, 117218 Russia; Innopolis, 420500 Russia

N. Khokhlov

Moscow Institute of Physics and Technology; Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”

Email: k_h@inbox.ru
Dolgoprudny, Moscow region, 141701 Russia; Moscow, 117218 Russia

A. Kozhemyachenko

Moscow Institute of Physics and Technology; Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”

Email: anton-kozhemyachenko@yandex.ru
Dolgoprudny, Moscow region, 141701 Russia; Moscow, 117218 Russia

I. Petrov

Moscow Institute of Physics and Technology; Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”

Email: petrov@mipt.ru
Dolgoprudny, Moscow region, 141701 Russia; Moscow, 117218 Russia

Әдебиет тізімі

  1. Micucci M., Iula A. Recent advances in machine learning applied to ultrasound imaging // Electronics. 2022. V. 11. № 11. Art. № 1800.
  2. Wu X., Ma J., Si X., Bi Z., Yang J., Gao H., Xie D., Guo Z., Zhang J. Sensing prior constraints in deep neural networks for solving exploration geophysical problems // Proceedings of the National Academy of Sciences. 2023. V. 120. № 23. Art. № e2219573120.
  3. Golubev V., Anisimov M. Application of convolutional networks for localization and prediction of scalar parameters of fractured geological inclusion // International Journal of Applied Mechanics. 2024. V. 16. № 5. Art. № 2450064.
  4. Tsukanov A.A., Gorbatikov A.V. Influence of the contribution of body waves to the result of the microseismic sounding method // Acoustical Physics. 2020. V. 66. P. 191–197.
  5. Favorskaya A., Petrov I. A novel method for investigation of acoustic and elastic wave phenomena using numerical experiments // Theoretical and Applied Mechanics Letters. 2020. V. 10. № 5. P. 307–314.
  6. Eremin A.A., Glushkov E.V., Glushkova N.V., Lammering R. Localization of inhomogeneities in an elastic plate using the time reversal method // Acoustical Physics. 2017. V. 63. P. 562–569.
  7. Presnov D.A., Sobisevich A.L., Shurup A.S. Determination of ice cover parameters using seismoacoustic noise // Acoustical Physics. 2023. V. 69. № 5. P. 725–737.
  8. Zou Q., Huang J.P., Yong P., Li Z.C. 3D elastic waveform modeling with an optimized equivalent staggered-grid finite-difference method // Petroleum Science. 2020. V. 17. P. 967–989.
  9. Bosma S., Hajibeygi H., Tene M., Tchelepi H.A. Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM) // Journal of Computational Physics. 2017. V. 351. P. 145–164.
  10. Gulizzi V., Saye R. Modeling wave propagation in elastic solids via high-order accurate implicit-mesh discontinuous Galerkin methods // Computer Methods in Applied Mechanics and Engineering. 2022. V. 395. Art. № 114971.
  11. Nanda N. Wave propagation analysis of laminated composite shell panels using a frequency domain spectral finite element model // Applied Mathematical Modelling. 2021. V. 89. P. 1025–1040.
  12. Favorskaya A.V., Petrov I.B. Grid-characteristic method // Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications. Smart Innovation, Systems and Technologies. 2018. V. 90. P. 117–160.
  13. Shevchenko A.V., Golubev V.I. Boundary and contact conditions of higher order of accuracy for grid-characteristic schemes in acoustic problems // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 10. P. 1760–1772.
  14. Golubev V.I., Nikitin I.S., Mi X. Numerical schemes of higher approximation orders for dynamic problems of elastoviscoplastic media // Journal of Siberian Federal University. Mathematics and Physics. 2024. V. 17. № 1. P. 8–17.
  15. Golubev V.I., Nikitin I.S. Refined schemes for computing the dynamics of elastoviscoplastic media // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 10. P. 1874–1885.
  16. Golubev V., Nikitin I., Beklemysheva K. Model of fractured medium and nondestructive control of composite materials // Chinese Journal of Aeronautics. 2024. V. 37. № 2. P. 93–99.
  17. Steger J.L., Benek J.A. On the use of composite grid schemes in computational aerodynamics // Computer Methods in Applied Mechanics and Engineering. 1987. V. 64. № 1–3, 301–320.
  18. Khokhlov N., Favorskaya A., Stetsyuk V., Mitskovets I. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones // Journal of Computational Physics. 2021. V. 446. Art. № 110637.
  19. Zang N., Zhang W., Chen X. An overset-grid finite-difference algorithm for simulating elastic wave propagation in media with complex free-surface topography // Geophysics. 2021. V. 86. № 4. P. T277–T292.
  20. Muratov M.V., Petrov I.B., Sannikov A.V., Favorskaya A.V. Grid-characteristic method on unstructured tetrahedral meshes // Computational Mathematics and Mathematical Physics. 2014. V. 54. P. 837–847.
  21. Favorskaya A.V., Petrov I.B. A study of high-order grid-characteristic methods on unstructured grids // Numerical Analysis and Applications. 2016. V. 9. P. 171–178.
  22. Duan P., Gu B., Li Z., Li Q. An overset mesh-free finite-difference method for seismic modeling including surface topography // Geophysics. 2023. V. 88. № 5. P. T271–T288.
  23. Qiu H., Sun Y.C., Fang C., Zhang W., Chen X. An overset-grid finite-difference algorithm for seismic wavefield propagations modelling in the polar coordinate system with a complex free-surface topography // Geophysical Journal International. 2024. V. 241. № 3. P. 1881–1895.
  24. Kozhemyachenko A.A., Favorskaya A.V. Grid convergence analysis of grid-characteristic method on Chimera meshes in ultrasonic nondestructive testing of railroad rail // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 10. P. 1886–1903.
  25. Pesnya E., Favorskaya A.V., Petrov I.B., Khokhlov N.I. Parallelization strategies for ultrasonic wave propagation in composite materials considering microstructural details // Supercomputing Frontiers and Innovations. 2024. V. 11 № 4. P. 66–77.
  26. Favorskaya A.V., Khokhlov N.I., Golubev V.I., Shevchenko A.V. Boundary conforming Chimera meshes to account for surface topography and curved interfaces in geological media // Lobachevskii Journal of Mathematics. 2024. V. 45. № 1. P. 191–212.
  27. Favorskaya A.V., Khokhlov N.I., Petrov I.B. Grid-characteristic method on joint structured regular and curved grids for modeling coupled elastic and acoustic wave phenomena in objects of complex shape // Lobachevskii Journal of Mathematics. 2020. V. 41. P. 512–525.
  28. Kholodov A.S., Kholodov Y.A. Monotonicity criteria for difference schemes designed for hyperbolic equations // Computational Mathematics and Mathematical Physics. 2006. V. 46. P. 1560–1588.
  29. Khokhlov N.I., Favorskaya A., Furgailo V. Grid-characteristic method on overlapping curvilinear meshes for modeling elastic waves scattering on geological fractures // Minerals. 2022. V. 12. № 12. Art. № 1597.
  30. Peng L., Nianhua W., Chang X., Zhang L., Yadong W.U. An automatic isotropic/anisotropic hybrid grid generation technique for viscous flow simulations based on an artificial neural network // Chinese Journal of Aeronautics. 2022. V. 35. № 4. P. 102–117.
  31. Sang K.H., Yin X.Y., Zhang F.C. Machine learning seismic reservoir prediction method based on virtual sample generation // Petroleum Science. 2021. V. 18. № 6. P. 1662–1674.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025