Новые результаты исследования радиации на борту TGO Экзомарс в 2018–2023 г.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В статье дано краткое описание дозиметра Liulin-MO, который входит в состав прибора FREND (Fine Resolution Epithermal Neutron Detector), установленного на космическом аппарате TGO (Trace Gas Orbiter) миссии ExoMars-2016. С апреля 2018 г. TGO работает на орбите вокруг Марса. Представлены данные о радиационной обстановке на орбите Марса на фазе спада 24-го цикла солнечной активности и фазе роста 25-го цикла. В рассматриваемый период наблюдался максимум потока и мощности дозы, обусловленный галактическими космическими лучами (ГКЛ). В период с июля 2021 г. по март 2023 г. дозиметром Люлин-МО зарегистрировано восемь возрастаний потоков частиц и мощности дозы от солнечных протонных событий (СПС). Представлены данные о радиационной обстановке во время СПС на орбите Марса в июле 2021 г. – марте 2022 г., когда Марс находился на противоположной по отношению к Земле стороне от Солнца. Проведено сравнение потоков частиц, измеренных на орбитах около Земли и Марса.

Full Text

Restricted Access

About the authors

Й. Семкова

Институт космических исследований и технологии Болгарской академии наук

Author for correspondence.
Email: jsemkova@stil.bas.bg
Bulgaria, София

В. Бенгин

Государственный научный центр Российской Федерации Институт медико-биологических проблем РАН

Email: v_benghin@mail.ru
Russian Federation, Москва

Р. Колева

Институт космических исследований и технологии Болгарской академии наук

Email: jsemkova@stil.bas.bg
Bulgaria, София

К. Крастев

Институт космических исследований и технологии Болгарской академии наук

Email: jsemkova@stil.bas.bg
Bulgaria, София

Ю. Матвейчук

Институт космических исследований и технологии Болгарской академии наук

Email: jsemkova@stil.bas.bg
Bulgaria, София

Б. Томов

Институт космических исследований и технологии Болгарской академии наук

Email: jsemkova@stil.bas.bg
Bulgaria, София

Н. Банков

Институт космических исследований и технологии Болгарской академии наук

Email: jsemkova@stil.bas.bg
Bulgaria, София

С. Малчев

Институт космических исследований и технологии Болгарской академии наук

Email: jsemkova@stil.bas.bg
Bulgaria, София

Ц. Дачев

Институт космических исследований и технологии Болгарской академии наук

Email: jsemkova@stil.bas.bg
Bulgaria, София

В. Шуршаков

Государственный научный центр Российской Федерации Институт медико-биологических проблем РАН

Email: v_benghin@mail.ru
Russian Federation, Москва

С. Дробышев

Государственный научный центр Российской Федерации Институт медико-биологических проблем РАН

Email: v_benghin@mail.ru
Russian Federation, Москва

И. Митрофанов

Институт космических исследований РАН

Email: mitrofanov@np.cosmos.ru
Russian Federation, Москва

Д. Головин

Институт космических исследований РАН

Email: mitrofanov@np.cosmos.ru
Russian Federation, Москва

А. Козырев

Институт космических исследований РАН

Email: mitrofanov@np.cosmos.ru
Russian Federation, Москва

М. Литвак

Институт космических исследований РАН

Email: mitrofanov@np.cosmos.ru
Russian Federation, Москва

М. Мокроусов

Институт космических исследований РАН

Email: mitrofanov@np.cosmos.ru
Russian Federation, Москва

References

  1. Мирошниченко Л.И., Петров В.М. Динамика радиационных условий в космосе. М.: Энергоатомиздат, 1985. 148 с.
  2. Митрофанов И.Г., Литвак М.Л., Санин А.Б., Семкова Й.В., Дачев Ц.П. Оценка нейтронной компоненты радиационного фона в кратере Гейл на Марсе // Астрон. вестн. 2023. T. 57. № 3. С. 199–208. https://doi.org/10.31857/S0320930X2303007. (Mitrofanov I. G., Litvak M. L., Sanin A. B., Semkova I. V., Dachev Ts. P. Estimation of the Neutron Component of the Radiation Background in the Gale Crater on Mars // Sol. Syst. Res. 2023. V. 57. № 3. P. 191–199.)
  3. Панасюк М.И., Новиков Л.С. (Ред.) Модель космоса: Научно-информационное издание. Т. 1. Гл. 3. Физические условия в космическом пространстве. М., 2007. С. 417–667.
  4. Шафиркин А.В., Григорьев Ю.Г. Межпланетные и орбитальные полеты. Радиационный риск для космонавтов. Радиобиологическое обоснование. М.: Экономика, 2009. 639 с.
  5. Brueckner G.E., Howard R.A., Koomen M.J., Korendyke C.M., Michels D.J., Moses J.D., Socker D.G., Dere K.P., Lamy P.L., Llebaria A., and 5 co-authors, The Large Angle Spectroscopic Coronagraph (LASCO) // Sol. Phys. 1995. V. 162. P. 357–402. https://doi.org/10.1007/BF00733434
  6. Durante M., Cucinotta F.A. Physical basis of radiation protection in space travel // Rev. Modern Phys. 2011. V. 83. № 4. P. 1245–1281.
  7. Frank G.M., Saksonov P.P., Antipov V.V., Dobrov N.N. Radiobiological problems of space flights // Proc. 1st Int. Symp. on “Basic environmental problems of man in space”, Paris, 1962 / Ed. Bjurstedt H. Wien – New York: Springer Sci., 1965. P. 254–266.
  8. Gieseler J., Dresing N., Palmroos C., von Forstner J.L.F., Price D.J., Vainio R., Kouloumvakos A., Rodríguez-García L., Trotta D., Génot V., Masson A., Roth M., Veronig A., Solar-MACH: An open-source tool to analyze solar magnetic connection configurations // Front. Astron. Space Sci. 2022. V. 9. https://doi.org/10.3389/fspas.2022.1058810
  9. Gopalswamy N., Yashiro S., Michalek G., Stenborg G., Vourlidas A., Freelan, S., Howard R., The SOHO/LASCO CME Catalog // Earth, Moon, and Planets. 2009. V. 104. P. 295–313. https://doi.org/10.1007/s11038-008-9282-7
  10. Grigoriev Yu., Guskova A.K., Domshlak M., Wysocki V.G., Raevskaya S.A., Markelov B.A., Darenskay N. The problem for establish of a limits doses to cosmonauts // Proc. XVI-th Int. Astronautical Congress. Athens, Sеpt. 13–18, 1965. V. 4. P. 145–161.
  11. Guo J., Zeitlin C., Wimmer-Schweingruber R.F., Rafkin S., Hassler D.M., Posner A., Heber, B., Köhler, J., Ehresmann B., Appel J. K., and 8 co-authors, Modeling the variations of dose rate measured by RAD during the first MSL Martian year: 2012–2014 // Astrophys. J. 2015. V. 810. № 1. id. 24.
  12. Guo J., Zeitlin C., Wimmer-Schweingruber R., Hassler D.M., Köhler J., Ehresmann B., Böttcher S., Böhm E., Brinza D.E. Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15 // Life Sci. Space Res. 2017. V. 14. P. 12–17.
  13. Guo J., Zeitlin C., Wimmer-Schweingruber R.F., Hassler D.M., Ehresmann B., Rafkin S., von Forstner, F. J. L.; Khaksarighiri S.; Liu W.; Wang Y., Radiation environment for future human exploration on the surface of Mars: The current understanding based on MSL/RAD dose measurements // Astron. and Astrophys. Rev. 2021. V. 29. № 1. P. 1–81. https://doi.org/10.1007/s00159-021-00136-5.
  14. Guo J., Li X., Zhang J., Dobynde M. I., Wang Y., Xu Z., Berger T., Semkova Y., Wimmer-Schweingruber R. F., Hassler D., Zeitlin C. Ehresmann B., Matthiä D., Zhuang B., The first ground level enhancement seen on three planetary surfaces: Earth, Moon, and Mars // Geophys. Res. Lett. 2023. V. 50. № 15. id. 2023GL103069. https://doi.org/10.1029/2023GL103069
  15. Hassler D. M., Zeitlin C., Wimmer-Schweingruber R.F., Ehresmann B., Rafkin S., Eigenbrode J. L., Brinza D. E., Weigle G., Böttcher S., Böhm E., and 14 co-authors, Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover // Science. 2014. V. 343. № 6169. id. 1244797. https://doi.org/10.1126/Science.1244797
  16. Howard R. A., Moses J. D., Socker D. J., Dere K. P., Cook J. W., SECCHI Consortium. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) // Adv. Space Res. 2002. V. 29. № 12. P. 2017–2026. https://doi.org/10.1016/S0273-1177(02)00147-3
  17. Litvak M.L., Sanin A.B., Mitrofanov I.G., Bakhtin B., Jun I., Martinez-Sierra L. M.., Nosov A., Perkhov A. S., Mars neutron radiation environment from HEND/Odyssey and DAN/MSL observations // Planet. and Space Sci. 2020. V. 184. id. 104866. https://doi.org/10.1016/j.pss.2020.104866
  18. Litvak M.L., Mitrofanov I.G., Sanin A.B., Bakhtin B., Golovin D. V., . Zeitlin C. Observations of neutron radiation environment during Odyssey cruise to Mars // Life Sci. Space Res. 2021. V. 29. P. 53–62. https://doi.org/10.1016/j.lssr.2021.03.003
  19. Mitrofanov I., Maklahov A., Bakhtin B., Golovin D., Kozyrev A., Litvak M., Mokrousov M., Sanin A., Tretyakov V., Vostrukhin A., and 12 co-authors Fine Resolution Epithermal Neutron Detector (FREND) onboard the Trace Gas Orbiter // Space Sci. Rev. 2018. V. 214. id. 86. https://doi.org/10.1007/s11214-018-0522-5
  20. National Research Council. 1967. Radiobiological Factors in Manned Space Flight. Washington, DC: The National Academies Press. https://doi.org/10.17226/12407
  21. National Research Council. 1970. Radiation Protection Guides and Constraints for Space-Mission and Vehicle-Design Studies Involving Nuclear Systems. Washington, DC: The National Academies Press. https://doi.org/10.17226/12393
  22. Semkova J., Koleva R., Benghin V., Dachev T., Matviichuk Yu., Tomov B., Krastev K., Maltchev St., Dimitrov P., Mitrofanov I. and 14 co-authors, Charged particles radiation measurements with Liulin-MO dosimeter of FREND instrument aboard ExoMars Trace Gas Orbiter during the transit and in high elliptic Mars orbit // Icarus. 2018. V. 303. P. 53–66. https://doi.org/10.1016/j.icarus.2017.12.034
  23. Semkova J., Semkova J., Koleva R., Benghin V., Dachev T., Matviichuk Yu., Tomov B., Krastev K., Maltchev S., Dimitrov P., Bankov N., and 12 co-authors. Results from radiation environment measurements aboard ExoMars Trace Gas Orbiter in Mars science orbit in May 2018 – December 2019 // Icarus. 2021. V. 361. id. 114264. https://doi.org/10.1016/j.icarus.2020.114264
  24. Zeitlin C., Hassler D.M., Cucinotta F.A., Ehresmann B., Wimmer-Schweingruber R.F., Brinza D.E., Kang S., Weigle G., Böttcher S., Böhm E., and 7 co-authors. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory // Science. 2013. V. 340. P. 1080–1084. https://doi.org/10.1126/science.1235989

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the arrangement of detectors in the Liulin-MO device (Semkova et al., 2021).

Download (157KB)
3. Fig. 2. Location of the Liulin-MO dosimeter on the FREND device.

Download (157KB)
4. Fig. 3. Detector shielding functions (left panel) and the corresponding dependences of the effective proton detection area on their energy (right panel).

Download (137KB)
5. Fig. 4. Solar activity during the periods of measurements by the Liulin-MO instrument. The shaded areas show the periods of Liulin-MO measurements: on the flight path, MCO1 and MCO2 – the left rectangle, and on the scientific, circular orbit of Mars – the right rectangle.

Download (362KB)
6. Fig. 5. Graphs of average daily values ​​of particle fluxes and radiation dose rates measured by the Liulin-MO device.

Download (251KB)
7. Fig. 6. Relative positions of the Sun, Earth, Mars and model lines of force of the interplanetary magnetic field connecting the Earth and Mars with the Sun on October 28, 2021.

Download (120KB)
8. Fig. 7. Time dependence of the proton flux near the Earth and the particle flux measured near Mars. The curve is the flux of protons with energies greater than 50 MeV, registered near the Earth by the GOES-16 spacecraft. The dots are the particle flux measured by the pair of detectors A and B of the Liulin-MO instrument near Mars.

Download (102KB)
9. Fig. 8. Dose rates to silicon (upper panel) and accumulated doses to water from solar energetic particles (lower panel) measured at different locations in the Solar System during the SPE on October 28, 2021. The data are taken from (Guo et al., 2023). The notations from bottom to top correspond to: RAD instrument operating on the surface of Mars, Liulin-MO instrument in orbit around Mars, RAMIS instrument operating in polar orbit near Earth, LND instrument operating on the lunar surface, CRaTER instrument in lunar orbit.

Download (265KB)
10. Fig. 9. Relative positions of the Sun, Earth, Mars and model lines of force of the interplanetary magnetic field connecting the Earth and Mars with the Sun on February 15, 2022.

Download (122KB)
11. Fig. 10. Comparison of particle fluxes recorded by the GOES and ExoMars spacecraft during the SPE on February 15, 2022. The curve is the flux of protons with energies greater than 50 MeV recorded near Earth by the GOES-16 spacecraft. The dots are the flux of particles measured by the pair of detectors A and B of the Liulin-MO instrument near Mars.

Download (118KB)
12. Fig. 11. Mutual arrangement of the Sun, Earth, Mars and model lines of force of the interplanetary magnetic field connecting the Earth and Mars with the Sun on February 24 and 25, 2023.

Download (91KB)
13. Fig. 12. Comparison of particle fluxes recorded by the GOES-16 and ExoMars spacecraft during the SPE on February 24–25, 2023. Curves are fluxes of protons with energies greater than 50 MeV and greater than 100 MeV, respectively, recorded near Earth by the GOES-16 spacecraft. Dots are the particle fluxes measured by the pair of detectors A and B of the Liulin-MO instrument near Mars.

Download (141KB)

Copyright (c) 2024 The Russian Academy of Sciences