Содержание подповерхностного водяного льда в кратере Кабео по данным измерений прибора LEND на борту орбитальной миссии NASA LRO

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В статье представлены результаты анализа данных российского нейтронного спектрометра LEND (Lunar Exploration Neutron Detector), установленного на борту лунного орбитального аппарата NASA LRO (Lunar Reconnaissance Orbiter). Получена оценка содержания подповерхностного водяного льда в вечно затененной области Кабео-1, расположенной внутри большого кратера Кабео в окрестности южного полюса Луны. В анализе были использованы наблюдения, выполненные с прибором LEND за период с 2009 по 2023 гг. Показано, что нейтронное альбедо поверхности в окрестности и внутри Кабео-1 коррелирует с высотой рельефа и распределением среднегодовых температур. Среднее содержание подповерхностного водяного льда по всей области Кабео-1 было оценено как 0.49±0.05% по массовой доле. Максимальное значение около 0.7% наблюдается на самом дне кратера на участке поверхности, где зафиксирована минимальная среднегодовая температура. Этот участок совпадает с местом проведения ударного эксперимента LCROSS (Lunar Crater Observation and Sensing Satellite), в рамках которого было подтверждено значительное количество водяного льда в приповерхностном веществе Луны.

About the authors

М. Л. Литвак

Институт космических исследований РАН

Author for correspondence.
Email: litvak@mx.iki.rssi.ru
Russian Federation, Москва

И. Г. Митрофанов

Институт космических исследований РАН

Email: litvak@mx.iki.rssi.ru
Russian Federation, Москва

А. Б. Санин

Институт космических исследований РАН

Email: litvak@mx.iki.rssi.ru
Russian Federation, Москва

М. В. Дьячкова

Институт космических исследований РАН

Email: litvak@mx.iki.rssi.ru
Russian Federation, Москва

References

  1. Arnold J.R. Ice in the lunar polar regions // J. Geophys. Res. 1979. V. 84. P. 5659–5668.
  2. Binder A.B. Lunar Prospector: Overview // Science. 1998. V. 281 (5382). P. 1475–1476.
  3. Boynton W.V., Droege G.F., Mitrofanov I.G., McClanahan T.P., Sanin A.B., Litvak M.L., Schaffner M., Chin G., Evans L.G., Garvin J.B., and 5 co-authors. High spatial resolution studies of epithermal neutron emission from the lunar poles: Constraints on hydrogen mobility // J. Geophys. Res. 2012. V. 117. id. E00H33. https://doi.org/10.1029/2011JE003979
  4. Clark R.N. Detection of adsorbed water and hydroxyl on the Moon // Science. 2009. V. 326. P. 562–564.
  5. Colaprete A., Schultz P., Heldmann J., Wooden D., Shirley M., Ennico K., Hermalyn B., Marshall W., Ricco A., Elphic R.C., and 7 co-authors. Detection of water in the LCROSS ejecta plume // Science. 2010. V. 330. P. 463–468.
  6. Crider D.H., Vondrak R.R. The solar wind as a possible source of lunar polar hydrogen deposits // J. Geophys. Res.: Planets. 2000. V. 105. P. 26773–26782.
  7. Drake D., Feldman W.C., Jakosky B.M. Martian neutron leakage spectra // J. Geophys. Res. 1988. V. 93. № B6. P. 6353–6368. https://doi.org/10.1029/JB093iB06p06353.
  8. Feldman W.C., Maurice S., Binder A.B., Barraclough B.L., Elphic R.C., Lawrence D.J. Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles // Science. 1998. V. 281. P. 1496–1500.
  9. Feldman W.C., Maurice S., Lawrence D.J., Little R.C., Lawson S.L., Gasnault O., Wiens R.C., Barraclough D.L., Elphic R.C., Prettyman T.H., and 2 co-authors. Evidence for water ice near the lunar poles // J. Geophys. Res. 2001. V. 106. P. 23231–23251.
  10. Gladstone G.R., Retherford K.D., Egan A.F., Kaufmann D.E., Miles P.F., Parker J.W., Horvath D., Rojas P.M., Versteeg M.H., Davis M.V., and 10 co-authors. Far-ultraviolet reflectance properties of the Moon's permanently shadowed regions: Albedo of Moon's permanently shadowed regions // J. Geophys. Res. 2012. V. 117(E12). https://doi.org/10.1029/2011JE003913
  11. Hayne P.O., Hendrix A., Sefton-Nash E., Siegler M.A., Lucey P.G., Retherford K.D., Williams J.P., Greenhagen B.T., Paige D.A. Evidence for exposed water ice in the Moon's south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements // Icarus. 2015. V. 255. P. 58–69. https://doi.org/10.1016/j.icarus.2015.03.032
  12. Head J.W., Wilson L., Deutsch A.N., Rutherford M.J., Saal A.E. Volcanically induced transient atmospheres on the Moon: Assessment of duration, significance, and contributions to polar volatile traps // Geophys. Res. Lett. 2020. V. 47(18). id. e2020GL089509. https://doi.org/10.1029/2020GL089509
  13. Lawrence D.W., Feldman W.C., Elphic R.C., Hagerty J.J., Maurice S., McKinney G.W., Prettyman T.H. Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles // J. Geophys. Res. 2006. V. 111. id. E08001.
  14. Lawrence D.J., Peplowski P.N., Wilson J.T., Elphic R.C. Global hydrogen abundances on the lunar surface // J. Geophys. Res.: Planets. 2022. V. 127. id. e2022JE007197. https://doi.org/10.1029/2022JE007197
  15. Lemelin M., Li S., Mazarico E., Siegler M.A., Kring D.A., Paige D.A. Framework for coordinated efforts in the exploration of volatiles in the south polar region of the Moon // Planet. Sci. J. 2021. V. 2. id. 103 (17p.). https://doi.org/10.3847/PSJ/abf3c5
  16. Litvak M.L., Mitrofanov I.G., Sanin A.B., Malakhov A., Boynton W.V., Chin G., Droege G., Evans L.G., Garvin J., Golovin D.V., and 10 co-authors. Global maps of lunar neutron fluxes from the LEND instrument // J. Geophys. Res. 2012a. V. 117. id. E00H22. http://dx.doi.org/10.1029/2011JE003949
  17. Litvak M.L., Mitrofanov I.G., Sanin A.B., Golovin D.V., Malakhov A.V., Boynton W.V., Droege G., Harshman K., Starr R.D., Milikh G., and Sagdeev R. LEND neutron data processing for the mapping of the Moon // J. Geophys. Res. 2012b. V. 117. id. E00H32. http://dx.doi.org/10.1029/2011JE004035
  18. Litvak M.L., Mitrofanov I.G., Sanin A.B., Bakhtin B.N., Bodnarik J.G. Boynton W.V., Chin G, Evans L.G., Harshman K., Livengood T.A., and 5 co-authors. The variations of neutron component of lunar radiation background from LEND/LRO observations // Planet. and Space Sci. 2016. V. 122. P. 53–65. https://doi.org/10.1016/j.pss.2016.01.006
  19. Magaña L.O., Retherford K.D., Byron B.D., Hendrix A.R., Grava C., Mandt K.E., Raut U., Czajka E., Hayne P.O., Hurley D.V., and 6 co-authors. LRO-LAMP survey of lunar south pole cold traps: Implication for the presence of condensed H 2 O // J. Geophys. Res.: Planets. 2022. V. 127 (11). id. e2022JE007301. https://doi.org/10.1029/2022JE007301
  20. Magaña L.O., Retherford K.D., Byron B.D., Hendrix A.R., Grava C., Mandt K.E., Raut U., Czajka E., Hayne P.O., Hurley D.V., and 6 co-authors. LRO-LAMP lunar south pole cold traps: Assessment of H 2 O and potential CO 2 and NH 3 reserves // J. Geophys. Res.: Planets. 2023. V. 128. id. e2023JE007863. https://doi.org/10.1029/2023JE007863
  21. Maurice S.W., Lawrence D.J., Feldman W.C., Elphic R.C., Gasnault O. Reduction of neutron data from Lunar Prospector // J. Geophys. Res.: Planets. 2004. V. 109. id. E07S04.
  22. Mazarico E., Neumann G.A., Smith D.E., Zuber M.T., Torrence M.H. Illumination conditions of the lunar polar regions using LOLA topography // Icarus. 2011. V. 211(2). P. 1066–1081. https://doi.org/10.1016/j.icarus.2010.10.030
  23. Masarik J., Reedy R.C. Gamma ray production and transport in Mars // J. Geophys. Res.: Planets. 1996. V. 101. № E8. P. 18891–18912. https://doi.org/10.1029/96JE01563
  24. Mitrofanov I.G., Bartels A., Bobrovnitsky Y.I., Boynton W., Chin G., Enos H., Evans L., Floyd S., Garvin J., Golovin D.V., and 26 co-authors. Lunar exploration neutron detector for the NASA lunar reconnaissance orbiter // Space. Sci. Rev. 2010a. V. 150. P. 183–207.
  25. Mitrofanov I.G., Sanin A.B., Boynton W.V., Chin G., Garvin J.B., Golovin D., Evans L.G., Harshman K., Kozyrev A.S., Litvak M.L., and 26 co-authors. Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND // Science. 2010b. V. 330. P. 483–486.
  26. Mitrofanov I.G., Litvak M., Sanin A., Malakhov A., Golovin D., Boynton W., Droege G., Chin G., Evans L., Harshman K., and 14 co-authors. Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO // J. Geophys. Res. 2012. V. 117. id. E00H27. https://doi.org/10.1029/2011JE003956
  27. Needham D.H., Kring D.A. Lunar volcanism produced a transient atmosphere around the ancient Moon // Earth and Planet. Sci. Lett. 2017. V. 478. P. 175–178.
  28. Nozette S., Lichtenberg C.L., Spudis P., Bonner R., Ort W., Malaret E., Robinson M., Shoemaker E.M. The Clementine bistatic radar experiment // Science. 1996. V. 274. P. 1495–1498.
  29. Paige D.A., Siegler M.A., Zhang J.A., Hayne P.O., Foote E.J., Bennett K.A., and 19 co-authors. Diviner Lunar Radiometer observations of cold traps in the Moon’s south polar region // Science. 2010. V. 330 (6003). P. 479–482. https://doi.org/10.1126/science.1187726
  30. Pieters C.M., Goswami J.N., Clark R.N., Annadurai M., Boardman J., Buratti B., Combe J.-P., Dyar M.D., Green R.., Head J.W., and 19 co-authors. Character and spatial distribution of OH/ H 2 O on the surface of the Moon seen by M3 on Chandrayaan-1 // Science. 2009. V. 326. P. 568–582.
  31. Sanin A.B., Mitrofanov I.G., Litvak M.L., Malakhov A., Boynton W.V., Chin G., Droege G., Evans L., Garvin J., Golovin D., and 10 co-authors. Testing lunar permanently shadowed regions for water ice: LEND results from LRO // J. Geophys. Res. 2012. V. 117. id. E00H26. https://doi.org/10.1029/2011JE003971
  32. Sanin A.B., Mitrofanov I.G., Litvak M.L., Bakhtin B.N., Bodnarik J.G., Boynton W.V., Chin G., Evans L.G., Harshman K., Fedosov F., and 10 co-authors. Hydrogen distribution in the lunar polar regions // Icarus. 2017. V. 283. P. 20–30.
  33. Smith D.E., Zuber M.T., Jackson G.B., Cavanaugh J.F., Neumann G.A., Riris H., Sun H., Zellar R.S., Coltharp C., Connelly J., and 21 co-authors. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit // Icarus. 2017. V. 283. P. 70–91.
  34. Stacy N.J.S., Campbell D.B., Ford P.G. Arecibo radar mapping of the lunar poles: A search for ice deposits // Science. 1997. V. 276 (5318). P. 1527–1530.
  35. Starukhina L.V., Shkuratov Y.G. The lunar poles: Water ice or chemically trapped hydrogen? // Icarus. 2000. V. 147. P. 585–587.
  36. Sunshine J.M., Farnham T.L., Feaga L.M., Groussin O., Merlin F., Milliken R.E., A'Hearn M.F. Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft // Science. 2009. V. 326. P. 565–568.
  37. Watson K., Brown H., Murray B. On possible presence of ice on Moon // J. Geophys. Res. 1961. V. 66. P. 1598–1600.
  38. Wilson J.T., Lawrence D.J., Peplowski P.N., Cahill J.T.S., Eke V.R., Massey R.J., Teodoro L.F.A. Image reconstruction techniques in neutron and gamma ray spectroscopy: Improving Lunar Prospector data // J. Geophys. Res.: Planets. 2018. V. 123 (7). P. 1804–1822.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 The Russian Academy of Sciences