Радиолокационные изображения постоянно затененных областей на южном полюсе Луны

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе представлены новые подробные радиолокационные карты и поляриметрические данные, охватывающие южный полярный район видимой стороны Луны размером 400×800 км с пространственным разрешением около 75 м. Данные были получены с использованием 64-метровой антенны ТНА-1500 Центра космической связи ОКБ МЭИ Медвежьи озера и 13.2-метрового радиотелескопа РТ-13 Обсерватории Светлое ИПА РАН на длине волны 4.2 см. На этой длине волны радиолокационные сигналы проникают в лунный реголит на глубину до 1 м и чувствительны к поверхностным и взвешенным породам размерами более 1 см. На картах видны 39% площади постоянно затененных областей, недоступных для наблюдений оптическими наземными средствами, в которых могут скрываться залежи водяного льда. Анализ радиолокационных карт не выявил связи между поляризационными свойствами поверхности в этих областях и наличием солнечного освещения. Полученные в результате этой работы данные могут быть использованы для изучения особенностей поверхности и приповерхностного слоя реголита южного полярного района Луны, включая поиск ледяных отложений в постоянно затененных областях, а также для планирования будущих лунных миссий.

Full Text

Restricted Access

About the authors

Ю. С. Бондаренко

Федеральное государственное бюджетное учреждение науки Институт прикладной астрономии РАН

Author for correspondence.
Email: bondarenko@iaaras.ru
Russian Federation, Санкт-Петербург

Д. А. Маршалов

Федеральное государственное бюджетное учреждение науки Институт прикладной астрономии РАН

Email: bondarenko@iaaras.ru
Russian Federation, Санкт-Петербург

Б. М. Зиньковский

Акционерное общество “Особое конструкторское бюро Московского энергетического института”

Email: bondarenko@iaaras.ru
Russian Federation, Москва

А. Г. Михайлов

Федеральное государственное бюджетное учреждение науки Институт прикладной астрономии РАН

Email: bondarenko@iaaras.ru
Russian Federation, Санкт-Петербург

References

  1. Жуков А.О., Иванов К.А., Бондарева М.К., Горовой Д.С. Наземный комплекс управления космическими аппаратами дальнего космоса // Сибирский аэрокосмич. журн. 2023. Т. 24. № 1. С. 99–108.
  2. Маршалов Д.А., Бондаренко Ю.С., Медведев Ю.Д., Вавилов Д.Е., Зотов М.Б., Михайлов А.Г. Комплекс средств для проведения радиолокационных наблюдений объектов, сближающихся с Землей // Приборы и техника эксперимента. 2018. Т. 4. C. 111–116.
  3. Митрофанов И.Г., Зеленый Л.М., Третьяков В.И., Калашников Д.В. Луна-25: первая полярная миссия на Луну // Астрон. вестн. 2021. Т. 55. № 6. С. 497–508. (Mitrofanov I.G., Zelenyi L.M., Tret'yakov V.I., Kalashnikov D.V. Luna-25: The first polar mission to the Moon // Sol. Syst. Res. 2021. V. 55. № 6. P. 485–495.)
  4. Павлов С.Р., Бондаренко Ю.С., Маршалов Д.А. Методика радиолокационного картирования Луны // Тр. ИПА РАН. 2023. Вып. 67. С. 3–7.
  5. Bondarenko Yu.S., Marshalov D.A., Makarchuk S. Radar images of the Moon at 4.2-cm wavelength // LPI Contrib. 2022. № 2678. id. 2131.
  6. Campbell B.A., Hawke B.R., Thompson T.W. Regolith composition and structure in the lunar maria: Results of long-wavelength radar studies // J. Geophys. Res. 1997. V. 102. № E8. P. 19307–19320.
  7. Campbell D.B., Campbell B.A., Carter L.M., Margot J.-L., Stacy N.J.S. No evidence for thick deposits of ice at the lunar south pole // Nature. 2006. V. 443. № 7113. P. 835–837.
  8. Campbell B.A., Campbell D.B., Margot J.L., Ghent R.R., Nolan M., Chandler J., Carter L.M., Stacy N.J.S. Focused 70-cm wavelength radar mapping of the Moon // IEEE Trans. 2007. V. 45. № 12. P. 4032–4042.
  9. Campbell B.A. High circular polarization ratios in radar scattering from geologic targets // J. Geophys. Res. 2012. V. 117. id. E06008.
  10. Carrier W.D., Olhoeft G.R., Mendell W. Physical Properties of the Lunar Surface. Lunar Sourcebook. A User's Guide to the Moon. Cambridge Univ. Press, 1991. P. 475–594.
  11. Colaprete A., Schultz P., Heldmann J., Wooden D., Shirley M., Ennico K., Hermalyn B., Marshall W., Ricco A., Elphic R.C., Goldstein D., Summy D., Bart G.D., Asphaug E., Korycansky D., Landis D., Sollitt L. Detection of water in the LCROSS ejecta plume // Science. 2010. V. 330. № 6003. P. 463–468.
  12. Evstigneev A.A., Chernov V.K., Evstigneeva O.Eu., Ipatova I.A., Khvostov Eu.Yu., Lavrov A.P., Pozdnyakov I.A., Vekshin Yu.V., Zotov M.B. RT-13 VLBI receivers // Trans. IAA RAS. 2020. V. 55. P. 36–40.
  13. Hapke B. Coherent backscatter and the radar characteristics of outer planet satellites // Icarus. 1990. V. 88. № 2. P. 407–417.
  14. Harmon J.K., Slade M.A., Vélez R.A., Crespo A., Dryer M.J., Johnson J.M. Radar mapping of Mercury's polar anomalies // Nature. 1994. V. 369. № 6477. P. 213–215.
  15. Margot J.L., Campbell D.B., Jurgens R.F., Slade M.A. Topography of the lunar poles from radar interferometry: A survey of cold trap locations // Science. 1999. V. 284. № 5420. P. 1658–1660.
  16. Mazarico E., Neumann G.A., Smith D.E., Zuber M.T., Torrence M.H. Illumination conditions of the lunar polar regions using LOLA topography // Icarus. 2011. V. 211. № 2. P. 1066–1081.
  17. Neish C.D., Bussey D.B.J., Spudis P., Marshall W., Thomson B.J., Patterson G.W., Carter L.M. The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site // J. Geophys. Res. 2011. V. 116. № E1. E01005.
  18. Nosov E., Marshalov D., Fedotov L., Sheynman Y. Multifunctional digital backend for quasar VLBI network // J. Instrumentation. 2021. V. 16. id. P05003.
  19. Nozette S., Lichtenberg C.L., Spudis P., Bonner R., Ort W., Malaret E., Robinson M., Shoemaker E.M. The Clementine bistatic radar experiment // Science. 1996. V. 274. № 5292. P. 1495–1498.
  20. Patterson G.W., Stickle A.M., Turner F.S., Jensen J.R., Bussey D.B.J., Spudis P., Espiritu R.C., Schulze R.C., Yocky D.A., Wahl D.E., and 12 co-authors. Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo observatory // Icarus. 2017. V. 283. P. 2–19.
  21. Simpson R.A., Tyler G.L. Reanalysis of Clementine bistatic radar data from the lunar South Pole // J. Geophys. Res. 1999. V.104. № E2. P. 3845–3862.
  22. Slade M.A., Butler B.J., Muhleman D.O. Mercury radar imaging: Evidence for polar ice // Science. 1992. V. 258. № 5082. P. 635–640.
  23. Schultz P.H., Hermalyn B., Colaprete A., Ennico K., Shirley M., Marshall W.S. The LCROSS cratering experiment // Science. 2010. V. 330. № 6003. P. 468–472.
  24. Shuygina N., Ivanov D., Ipatov A., Gayazov I., Marshalov D., Melnikov A., Kurdubov S., Vasilyev M., Ilin G., Skurikhina E., and 8 co-authors. Russian VLBI network “Quasar”: Current status and outlook // Geod. Geodyn. 2019. V. 10. № 2. P. 150–156.
  25. Stacy N.J.S., Campbell D.B., Ford P.G. Arecibo radar mapping of the lunar poles: A search for ice deposits // Science. 1997. V. 276. № 5318. P. 1527–1530.
  26. Thomson B.J., Bussey D.B.J., Neish C.D., Cahill J.T.S., Heggy E., Kirk R.L., Patterson G.W., Raney R.K., Spudis P.D., Thompson T.W., Ustinov E.A. An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar // Geophys. Res. Lett. 2012. V. 39. id. L14201.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of radar observations of the south pole of the Moon.

Download (133KB)
3. Fig. 2. Radar image of the mirror component of the south polar region of the Moon at a wavelength of 4.2 cm.

Download (390KB)
4. Fig. 3. Radar map of the mirror component of the echo signal (a) and a map of CPR values ​​superimposed on the mirror component (b) of the south polar region of the visible side of the Moon measuring 400 × 800 km along the prime meridian to the 68th parallel south latitude. Crater designations: Moretus, Simpelius, Sim. J, Short, Newton, Schomberger, Sch. A, Sch. G, Scott, Amundsen, Am. and Shackleton.

Download (1MB)
5. Fig. 4. Radar map of the mirror component of the echo signal of the central part of the south polar region of the Moon. White lines indicate the boundaries of the largest permanently shadowed areas. Crater designations: Haworth, Shoemaker, Faustini, de Gerlache, Shackleton, Slater and Sverdrup.

Download (1MB)
6. Fig. 5. Map of CPR values ​​superimposed on the specular component of the echo signal of the central part of the south polar region of the Moon. White lines indicate the boundaries of the largest, permanently shadowed regions. Crater designations: Haworth, Shoemaker, Faustini, de Gerlache, Shackleton, Slater, and Sverdrup.

Download (1MB)

Copyright (c) 2024 The Russian Academy of Sciences