Смена состава плазмы на повороте магнитопаузы Марса

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Высокое временное разрешение измерений магнитного поля и плазмы Марса обеспечиваются наблюдениями на спутнике Mars Atmosphere and Volatile Evolution (MAVEN; Jakosky и др., 2015), позволяют анализировать тонкие слои плазменной оболочки Марса. В этой статье описана магнитная структура, связанная с дневной марсианской магнитопаузой. Было показано, что прошедший через ударную волну солнечный ветер на дневной стороне Марса напрямую не взаимодействует с ионосферой Марса. Слой плазмы и магнитного поля толщиной 200–300 км образует дневную магнитосферу, которая является областью между магнитослоем и ионосферой (Вайсберг, Шувалов, 2020). Дневная магнитосфера бывает двух типов: 1) магнитосфера более распространенного типа состоит из нагретых и ускоренных ионов O+ и O2+, находящихся между ионосферой и обтекающим горячим потоком Марса; 2) другой тип дневной магнитосферы состоит из ускоренных ионов O+ и O2+ в магнитослое, где они образуют продолжающийся ускоренный пучок, формирующий плюм. Между магнитослоем и магнитосферой находится магнитная структура, которая вращается, почти не меняя своей величины. Эта структура расположена во второй части перехода np/(np + nh) от величины ~1 до ~10–2. Переход между магнитослоем и магнитосферой происходит плавно, как по плотности энергии, так и по составу ионов при уменьшении потока протонов и увеличении потока тяжелых ионов.

Full Text

Restricted Access

About the authors

О. Л. Вайсберг

Институт космических исследований РАН

Author for correspondence.
Email: olegv@iki.rssu.ru
Russian Federation, Москва

А. Ю. Шестаков

Институт космических исследований РАН

Email: olegv@iki.rssu.ru
Russian Federation, Москва

Р. Н. Журавлев

Институт космических исследований РАН

Email: olegv@iki.rssu.ru
Russian Federation, Москва

Д. Н. Морозова

Институт космических исследований РАН

Email: dashia110999@mail.ru
Russian Federation, Москва

А. Рамазан

Московский физико-технический институт

Email: olegv@iki.rssu.ru
Russian Federation, Москва

References

  1. Вайсберг О.Л., Шувалов С.Д. Структура дневной магнитосферы Марса: два типа // Астрон. вестн. 2022. Т. 56 № 5. С. 1–12. (Vaisberg O.L., Shuvalov S.D. Structure of the Martian dayside magnetosphere: Two types // Sol. Syst. Res. 2022. V. 56. № 5. Р. 279–290.)
  2. Bryant D.A., Riggs S. At the edge of the Earth's magnetosphere: A survey by AMPTE-UKS // Phil. Transact. Roy. Soc. London. Ser. A. 1988. V. 328. № 1598. P. 43–56.
  3. Chen Y.Q., Wu M., Du A.M., Xiao S.D., Wang G.Q., Zhang T.L. A case study of the induced magnetosphere boundary at the Martian subsolar region // Astrophys. J. 2022. V. 927. P. 171.
  4. Dong Y., Fang X., Brain D.A., McFadden J.P., Halekas J.S., Connerney J.E., Curry M., Harada Y., Luhmann J.G., Jakosky B.M. Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel // Geophys. Res. Lett. 2015. V. 42. P. 8942–8950.
  5. Espley J.R. The Martian magnetosphere: Areas of unsettled terminology // J. Geophys. Res.: Space Physics. 2018. V. 123. P. 4521–4525.
  6. Fedorov A.O., Vaisberg O.L., Intriligator D.S., Sagdeev R.Z., Galeev A.A. A large amplitude
  7. rotational wave in the Venusian ionosheath // J. Geophys. Res.: Atmospheres. 1991. V. 96. Р. 87–99.
  8. Fedorov A.O., Vaisberg O.L., Intriligator D.S. A large-amplitude rotational wave in the ionosheath of Venus // Adv. Space Res. 1992. V. 12. № 8. P. 313–317.
  9. Hall D.S., Bryant D.A., Chaloner C.P. Plasma variations at the dayside magnetopause // Proc. 7th ESA Symp. Rockets and Balloons. 1985. P. 299–304.
  10. Hapgood M.A., Bryant D.A. Re-ordered electron data in tile low-latitude boundary layer // Geophys. Res. Lett. 1990. V. 17. № 11. P. 2043–2046.
  11. Jakosky B.M., Lin R.P., Grebowsky J.M., Luhmann J.G., Mitchell D.F., Beutelschies G., Priser T., Acuna M., Andersson L., Baird D., and 64 co-authors. The Mars Atmosphere and Volatile Evolution (MAVEN) mission // Space Sci. Rev. 2015. V. 195. P. 3–48.
  12. Liemohn M.W., Johnson B.C., Franz M., Barabash S. Mars Express observations of high-altitude planetary ion beams and their relation to the “energetic plume” loss channel // J. Geophys. Res.: Space Physics. 2014. V. 119. P. 9702–9713.
  13. Ma Y., Shu Wang, Chao Shen, Nian Ren, Tao Chen, Peng Shao, Peng E., Bogdanova Y.V., Burch J.L. Rotational discontinuities in the magnetopause of an open magnetosphere // J. Geophys. Res.: Space Physics. 2022. V. 127. № 8.
  14. Sonnerup B., Scheible M. Minimum and Maximum. Variance analysis magnetic in reconnection // Analysis Meth. Multi-Spacecraft Data. 1998. P. 185–220.
  15. Vaisberg O.L., Bogdanov A.V., Smirnov V.N., Romanov S.A. On the nature of the solar wind-Mars interaction // NASA. Goddard Space Flight Center Solar-Wind Interaction with the Planets Mercury, Venus, and Mars. 1976.
  16. Vaisberg O.L., Ermakov V.N., Shuvalov S.D., Zelenyi L.M., Znobishchev A.S., Dubinin E.M. Analysis of dayside magnetosphere of Mars: High mass loading case as observed on MAVEN spacecraft // Planet. and Space Sci. 2017. V. 147. P. 28–37.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The MAVEN instruments used to study Mars in this paper include the ion and electron spectrometers and the magnetometer. MAVEN data include the magnetosheath, magnetopause, magnetosphere, and ionosphere on August 17, 2019, at ~23:32–23:45 EDT. Panels, from top to bottom: 1 – All ion flux; 2 – Proton flux H+; 3 – Oxygen flux O+; 4 – Oxygen flux O2+; 5 – Electron flux; 6 – Colored lines of ion density (key in right box) and relative ion and proton density (green lines); 7 – Velocities of the three ions (key in right box); 8 – Magnetic field components in the Mars-oriented Solar Orbit (MSO) coordinate system (keys on the right) and magnetic field magnitude (black line).

Download (1MB)
3. Fig. 2. Result of the minimum analysis of the magnetic field: (a) – the region of rotation of the magnetic field, vertical lines highlight the interval of the rotating magnetic field. (b) – components of the eigenvalues ​​of the minimum analysis L and N, where L and N are different projections in the coordinate system of the magnetic field (B1, B2, B3).

Download (293KB)
4. Fig. 3. The Mercator chart shows three intervals: slow movement in the region of point “a”, rapid rotation between points “a” and “b”, and slow movement at point “b”. The total angle is slightly more than 60°.

Download (101KB)
5. Fig. 4. The upper section shows a decrease in the differential flux of H+, i.e. solar wind protons, and the differential flux of O+ ion energy shows an increase in the ion energy flux in the same sector. The interval ranges from ~23:36:0 UT to 23:36:44 UT.

Download (460KB)
6. Fig. 5. August 4, 2019, 05:20:47 – 05:24:22 EDT. MAVEN data include the magnetosheath, magnetopause, magnetosphere, and ionosphere. Panels from top to bottom: 1 – sum of all ions differential energy-time; 2 – proton differential energy-time H+; 3 – oxygen differential energy-time O+; 4 – oxygen energy-time O2+; 5 – electron differential energy-time; 6 – colored lines for ion density (in the box on the right) and the relative density of ions and protons (green lines); 7 – velocities of the three ions (key in the box on the right); 8 – magnetic floor components in the Mars Solar Orbit (MSO) coordinate system (color legend on the right), and magnetic field magnitude (black line). The red color stripe at the bottom shows that the satellite is in the northern hemisphere. The vertical black stripes show approximately the magnetopause region. The sector between the two vertical lines indicates the location where the magnetic field rotates.

Download (1MB)
7. Fig. 6. Result of the minimum analysis of the magnetic field: (a) – diagrams of the components of the magnetic field and the type of rotation of the components of the magnetic field; (b) – components of the eigenvalues ​​of the minimum analysis L and N with minimum dispersion.

Download (252KB)
8. Fig. 7. Part of the Mercator map shows time intervals from approximately August 17, 2019, from 05:22:40 UT to 05:23:20 UT. Green dots show the trajectory of the rapid magnetic turn.

Download (92KB)
9. Fig. 8. Distribution of n+ and O+ densities in the time interval from 05:22:24 – 05:22:04 UT within the magnetopause sector.

Download (420KB)
10. Fig. 9. July 30, 2019, 01:10:26 – 01:20:30 EDT. MAVEN data include the magnetosheath, magnetopause, magnetosphere, and ionosphere. Panels from top to bottom: 1 – sum of all ions differential energy-time; 2 – proton differential energy-time H+; 3 – oxygen differential energy-time O+; 4 – oxygen energy-time O2+; 5 – electron differential energy-time; 6 – colored lines of ion density (keys in right box) and relative ion and proton density (green lines); 7 – velocities of the three ions (keys in right box); 8 – magnetic floor components in Mars Solar Orbit (MSO) coordinate system (color key is given on the right) and magnetic field magnitude (black line). The red color stripe at the bottom shows that the satellite is in the northern hemisphere. The two vertical black stripes show approximately the magnetopause region. The sector between the two vertical lines indicates the location where the magnetic field rotates.

Download (1MB)
11. Fig. 10. Result of the minimum magnetic field analysis: (a) – diagram of the magnetic field of minimum dispersion; (b) – two-dimensional view of the rotation of the magnetic field, where L is a fairly long and almost straight section of the diagram, and N is the most curved section of the diagram.

Download (219KB)
12. Fig. 11. Part of the Mercator map shows time intervals from about July 30, 2019 at ~01h23m UT. Green dots show the trajectory of the rapid magnetic turn.

Download (127KB)
13. Fig. 12. O+ separating the surrounding flow from the magnetosphere 01:22:24–01:23:24 UT.

Download (265KB)

Copyright (c) 2024 The Russian Academy of Sciences