Assemblages of ground-dwelling arachnids and carabids in metal-polluted forests: Are there signs of recovery after emission reductions from the Middle Ural Copper Smelter?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Information on the natural recovery of ground-dwelling invertebrate communities following reductions in industrial pollution is fragmentary. Assemblages of epigeic arachnids (spiders and harvestmen) and ground beetles in the southern taiga spruce-fir forests were analyzed in two areas – one background and the other polluted by long-term emissions from the Middle Ural Copper Smelter. Two periods were compared: relatively high emissions (2005) and almost cessed emissions starting from 2010 (2018). We tested the hypothesis that differences between the areas decreased by the second period compared to the first. We assessed total activity density, species richness, taxocene structure, and the abundance of groups identified based on ecological traits (body size, preferences for moisture level, stratum and habitat type, hunting strategy for arachnids, and mobility and feeding preferences for ground beetles). The hypothesis was not confirmed: differences between the areas persisted in total abundance, species richness, and taxocene structure. Some signs of recovery were observed in the arachnid assemblages: a shift towards “linifidization” (i.e., replacement of species from the family Lycosidae with species from the family Linyphiidae), an increase in harvestmen abundance, and the appearance of species previously recorded only in background forests. However, such signs were absent for ground beetles: taxocene features of contaminated areas remained intact, including an increased percentage of mixophytophages and the absence of species with large individuals.

Full Text

Restricted Access

About the authors

E. A. Belskaya

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: ev@ipae.uran.ru
Russian Federation, 620144 Yekaterinburg

A. N. Sozontov

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: ev@ipae.uran.ru
Russian Federation, 620144 Yekaterinburg

M. P. Zolotarev

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: ev@ipae.uran.ru
Russian Federation, 620144 Yekaterinburg

E. L. Vorobeichik

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: ev@ipae.uran.ru
Russian Federation, 620144 Yekaterinburg

References

  1. Воробейчик Е.Л. Естественное восстановление наземных экосистем после прекращения промышленного загрязнения. 1. Обзор современного состояния исследований // Экология. 2022. № 1. C. 3–41. https://doi.org/10.31857/S0367059722010115
  2. Babin‐Fenske J., Anand M. Terrestrial insect communities and the restoration of an industrially perturbed landscape: Assessing success and surrogacy // Restoration Ecology. 2010. V. 18. № s1. P. 73–84. https://doi.org/10.1111/j.1526-100X.2010.00665.x
  3. Niemeyer J.C., Nogueira M.A., Carvalho G.M. et al. Functional and structural parameters to assess the ecological status of a metal contaminated area in the tropics // Ecotoxicology and Environmental Safety. 2012. V. 86. P. 188–197. https://doi.org/10.1016/j.ecoenv.2012.09.013
  4. Perner J., Voigt W., Bährmann R. et al. Responses of arthropods to plant diversity: changes after pollution cessation // Ecography. 2003. V. 26. № 6. P. 788–800. https://doi.org/10.1111/j.0906-7590.2003.03549.x
  5. Braun S.D., Jones T.H., Perner J. Shifting average body size during regeneration after pollution – a case study using ground beetle assemblages // Ecological Entomology. 2004. V. 29. № 5. P. 543–554. https://doi.org/10.1111/j.0307-6946.2004.00643.x
  6. Lövei G.L., Magura T. Body size changes in ground beetle assemblages – a reanalysis of Braun et al.(2004)’s data // Ecological Entomology. 2006. V. 31. № 5. P. 411–414. https://doi.org/10.1111/j.1365-2311.2006.00794.x
  7. Lavelle P., Decaëns T., Aubert M. et al. Soil invertebrates and ecosystem services // European Journal of Soil Biology. 2006. V. 42. P. S3–S15. https://doi.org/10.1016/j.ejsobi.2006.10.002
  8. Niemelä J., Haila Y., Halme E. et al. Small-scale heterogeneity in the spatial distribution of carabid beetles in the southern Finnish taiga // Journal of Biogeography. 1992. V. 19. P. 173–181. https://doi.org/10.2307/2845503
  9. Koivula M., Punttila P., Haila Y., Niemelä J. Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest // Ecography. 1999. V. 22. № 4. P. 424–435.
  10. Magura T., Tóthmérész B., Molnár T. Changes in carabid beetle assemblages along an urbanisation gradient in the city of Debrecen, Hungary // Landscape Ecol. 2004. V. 19. № 7. P. 747–759.
  11. Paoletti M.G., Bressan M., Edwards C.A. Soil invertebrates as bioindicators of human disturbance // Critical Reviews in Plant Sciences. 1996. V. 15. № 1. P. 21–62. https://doi.org/10.1080/07352689609701935
  12. Afgin S.S., Luff M.L. Ground beetles (Coleoptera: Carabidae) as bioindicators of human impact // Munis Entomol. Zool. 2010. V. 5. № 1. P. 209–215.
  13. Koivula M.J. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions // Zookeys. 2011. № 100. P. 287–317. https://doi.org/10.3897/zookeys.100.1533
  14. Zmudzki S., Laskowski R. Biodiversity and structure of spider communities along a metal pollution gradient // Ecotoxicology. 2012. V. 21. P. 1523–1532. https://doi.org/10.1007/s10646-012-0906-3
  15. Yang H., Peng Y., Tian J. et al. Spiders as excellent experimental models for investigation of heavy metal impacts on the environment: A review // Environmental Earth Sciences. 2016. V. 75. № 13. Art. 1059. https://doi.org/10.1007/s12665-016-5828-6
  16. Migliorini M., Pigino G., Bianchi N. et al. The effects of heavy metal contamination on the soil arthropod community of a shooting range // Environmental Pollution. 2004. V. 129. № 2. P. 331–340. https://doi.org/10.1016/j.envpol.2003.09.025
  17. Walsh P.J., Day K.R., Leather S.R., Smith A. The influence of soil type and pine species on the carabid community of a plantation forest with a history of pine beauty moth infestation // Forestry. 1993. V. 66. № 2. P. 135–146. https://doi.org/10.1093/forestry/66.2.135
  18. Antvogel H., Bonn A. Environmental parameters and microspatial distribution of insects: a case study of carabids in an alluvial forest // Ecography. 2001. V. 24. № 4. P. 470–482. https://doi.org/10.1111/j.1600-0587.2001.tb00482.x
  19. Magura T., Lövei G.L., Tóthmérész B. Time-consistent rearrangement of carabid beetle assemblages by an urbanisation gradient in Hungary // Acta Oecologica. 2008. V. 34. № 2. P. 233–243. https://doi.org/10.1016/j.actao.2008.05.010
  20. Ziesche T.M., Roth M. Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: What makes the difference, tree species or microhabitat? // For. Ecol. Manage. 2008. V. 255. № 3. P. 738–752. https://doi.org/10.1016/j.foreco.2007.09.060
  21. Entling W., Schmidt M.H., Bacher S. et al. Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche // Global Ecol. Biogeogr. 2007. V. 16. № 4. P. 440–448. https://doi.org/10.1111/j.1466-8238.2006.00305.x
  22. Ribera I., Dolédec S., Downie I.S., Foster G.N. Effect of land disturbance and stress on species traits of ground beetle assemblages // Ecology. 2001. V. 82. № 4. P. 1112–1129. https://doi.org/10.1890/0012-9658(2001)082[1112:EOLDAS]2.0.CO;2
  23. Gobbi M., Fontaneto D. Biodiversity of ground beetles (Coleoptera: Carabidae) in different habitats of the Italian Po lowland // Agriculture, Ecosystems & Environment. 2008. V. 127. № 3-4. P. 273–276. https://doi.org/10.1016/j.agee.2008.04.011
  24. Pizzolotto R. Characterization of different habitats on the basis of the species traits and eco-field approach // Acta Oecologica. 2009. V. 35. № 1. P. 142–148. https://doi.org/10.1016/j.actao.2008.09.004
  25. Gallé R., Elek M., Gallé-Szpisjak N. The effects of habitat parameters and forest age on the ground dwelling spiders of lowland poplar forests (Hungary) // J. Insect Conserv. 2014. V. 18. P. 791–799. https://doi.org/10.1007/s10841-014-9686-9
  26. Бельская Е.А., Колесникова А.А. Видовой состав и экологические характеристики стафилинид (Coleoptera, Staphylinidae) южной тайги Среднего Урала // Энтомол. обозр. 2011. Т. 90. № 1. C. 123–137.
  27. Воробейчик Е.Л., Кайгородова С.Ю. Многолетняя динамика содержания тяжелых металлов в верхних горизонтах почв в районе воздействия медеплавильного завода в период сокращения объемов его выбросов // Почвоведение. 2017. № 8. C. 1009–1024. https://doi.org/10.7868/S0032180X17080135
  28. Воробейчик Е.Л., Трубина М.Р., Хантемирова Е.В., Бергман И.Е. Многолетняя динамика лесной растительности в период сокращения выбросов медеплавильного завода // Экология. 2014. № 6. C. 448–458. https://doi.org/10.7868/S0367059714060158
  29. Трубина М.Р. Уязвимость видов травяно-кустарничкового яруса к загрязнению выбросами медеплавильного завода: роль различий в способе распространения диаспор // Экология. 2020. № 2. C. 90–100. https://doi.org/10.31857/S0367059720020122
  30. Нестерков А.В., Гребенников М.Е. Сообщества моллюсков лугового травостоя в условиях снижения выбросов медеплавильного производства // Экология. 2020. № 6. C. 471–480. https://doi.org/10.31857/S0367059720060062
  31. Воробейчик Е.Л., Ермаков А.И., Гребенников М.Е. Начальные этапы восстановления сообществ почвенной мезофауны после сокращения выбросов медеплавильного завода // Экология. 2019. № 2. C. 133–148. https://doi.org/10.1134/S0367059719020112
  32. Воробейчик Е.Л., Ермаков А.И., Нестеркова Д.В., Гребенников М.Е. Крупные древесные остатки как микростации обитания почвенной мезофауны на загрязненных территориях // Изв. Российской академии наук. Серия биологическая. 2020. № 1. C. 85–95. https://doi.org/10.31857/S0002332920010178
  33. Мухачева С.В. Многолетняя динамика сообществ мелких млекопитающих в период снижения выбросов медеплавильного завода. 1. Состав, обилие и разнообразие // Экология. 2021. № 1. C. 66–76. https://doi.org/10.31857/S0367059721010108
  34. Михайлова И.Н. Динамика границ распространения эпифитных макролишайников после снижения выбросов медеплавильного завода // Экология. 2022. № 5. C. 321–333. https://doi.org/10.31857/S0367059722050080
  35. Бельская Е.А. Динамика трофической активности филлофагов березы в период снижения атмосферных выбросов медеплавильного завода // Экология. 2018. № 1. C. 74–80. https://doi.org/10.7868/S0367059718010092
  36. Бельский Е.А., Ляхов А.Г. Динамика населения птиц-дуплогнездников в условиях сокращения промышленных выбросов (на примере Среднеуральского медеплавильного завода) // Экология. 2021. № 4. C. 278–288. https://doi.org/10.31857/S0367059721040041
  37. Воробейчик Е.Л., Нестеркова Д.В. Техногенная граница распространения крота в районе воздействия медеплавильного завода: смещение в период сокращения выбросов // Экология. 2015. № 4. C. 308–312. https://doi.org/10.7868/S0367059715040162
  38. Нестерков А.В. Признаки восстановления сообществ беспозвоночных травостоя после снижения выбросов медеплавильного завода // Экология. 2022. № 6. C. 468–478. https://doi.org/10.31857/S0367059722060130
  39. Korkina I.N., Vorobeichik E.L. Non-typical degraded and regraded humus forms in metal-contaminated areas, or there and back again // Geoderma. 2021. V. 404. Art. 115390. https://doi.org/10.1016/j.geoderma.2021.115390
  40. Vorobeichik E.L., Korkina I.N. A bizarre layer cake: Why soil animals recolonizing polluted areas shape atypical humus forms // Sci. Total Environ. 2023. V. 904. Art. 166810. https://doi.org/10.1016/j.scitotenv.2023.166810
  41. Ермаков А.И. Изменение структуры населения жужелиц лесных экосистем под действием токсической нагрузки // Экология. 2004. № 6. C. 450–455.
  42. Бельская Е.А., Зиновьев Е.В. Структура комплексов жужелиц (Coleoptera, Carabidae) в природных и техногенно-нарушенных лесных экосистемах на юго-западе Свердловской области // Сибирский экол. журн. 2007. № 4. C. 533–543.
  43. Золотарев М.П. Изменение таксономической структуры населения паукообразных-герпетобионтов в градиенте загрязнения от выбросов медеплавильного комбината // Экология. 2009. № 5. C. 378–382.
  44. Бельская Е.А., Золотарев М.П. Изменение размерной структуры сообществ жужелиц при техногенной трансформации лесных экосистем // Экология. 2017. № 2. C. 107–115.
  45. Золотарев М.П., Бельская Е.А. Влияние техногенных и природных факторов на обилие беспозвоночных герпетобионтов // Евразиатский энтомологич. журн. 2012. № 1. C. 19–28.
  46. Davies G.M., Gray A. Don’t let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring) // Ecology and Evolution. 2015. V. 5. № 22. P. 5295–5304. https://doi.org/10.1002/ece3.1782
  47. Smorkalov I.A., Vorobeichik E.L. Does long-term industrial pollution affect the fine and coarse root mass in forests? Preliminary investigation of two copper smelter contaminated areas // Water, Air, Soil Pollut. 2022. V. 233. № 2. Art. 55. https://doi.org/10.1007/s11270-022-05512-0
  48. Belskaya E., Gilev A., Belskii E. Ant (Hymenoptera, Formicidae) diversity along a pollution gradient near the Middle Ural Copper Smelter, Russia // Environ. Sci. Pollut. Res. 2017. V. 24. № 11. P. 10768–10777. https://doi.org/10.1007/s11356-017-8736-8
  49. Farzalieva G.S., Esyunin S.L. The harvestman fauna of the Urals, Russia, with a key to the Ural species (Arachnida: Opiliones) // Arthropoda Selecta. 2000. V. 8. P. 183–199.
  50. Крыжановский О.Л. Сем. Carabidae – Жужелицы // Определитель насекомых европейской части СССР. Т.2. М.; Л.: Наука, 1965. С. 29–77.
  51. de Jong Y., Verbeek M., Michelsen V. et al. Fauna Europaea – all European animal species on the web // Biodiversity data journal. 2014. № 2. Art. e4034. https://doi.org/10.3897/BDJ.2.e4034
  52. Kryzhanovskij O.L., Belousov I.A., Kabak I.I. et al. A checklist of the ground-beetles of Russia and adjacent lands (Insecta, Coleoptera, Carabidae). Sofia–Moscow: Pensoft publishers, 1995. 271 p.
  53. Ухова Н.Л., Есюнин С.Л. Пауки природного парка «Кондинские озера» // Вестник экологии и ландшафтоведения. 2009. № 9. C. 63–76.
  54. Есюнин С.Л. Аннотированный список пауков Республики Башкортостан // Материалы по флоре и фауне Республики Башкортостан. 2015. № 9. C. 3–91.
  55. Sozontov A.N., Esyunin S.L. Spiders of the Udmurt Republic: fauna, ecology, phenology and distribution. Moscow: KMK Scientific Press, 2022. 285 p.
  56. Воронин А.Г. Фауна и комплексы жужелиц (Coleoptera, Trachypachidae, Carabidae) лесной зоны Среднего Урала (эколого-зоогеографический анализ). Пермь: Изд-во Пермского ун-та, 1999. 244 с.
  57. Ribera I., McCracken D.I., Foster G.N. et al. Morphological diversity of ground beetles (Coleoptera: Carabidae) in Scottish agricultural land // Journal of Zoology. 1999. V. 247. № 1. P. 1–18. https://doi.org/10.1111/j.1469-7998.1999.tb00188.x
  58. Matalin A.V. Variations in flight ability with sex and age in ground beetles (Coleoptera, Carabidae) of south-western Moldova // Pedobiologia. 2003. V. 47. № 4. P. 311–319. https://doi.org/10.1078/0031-4056-00195
  59. Homburg K., Homburg N., Schäfer F. et al. Carabids. org – a dynamic online database of ground beetle species traits (Coleoptera, Carabidae) // Insect Conservation and Diversity. 2014. V. 7. № 3. P. 195–205. https://doi.org/10.1111/icad.12045
  60. Hendrickx F., Maelfait J.P., Desender K. et al. Pervasive effects of dispersal limitation on within‐ and among‐community species richness in agricultural landscapes // Global Ecology and Biogeography. 2009. V. 18. № 5. P. 607–616. https://doi.org/10.1111/j.1466-8238.2009.00473.x
  61. Chao A., Gotelli N.J., Hsieh T.C. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies // Ecological Monographs. 2014. V. 84. № 1. P. 45–67. https://doi.org/10.1890/13-0133.1
  62. Hsieh T.C., Ma K.H., Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers) // Methods in Ecology and Evolution. 2016. V. 7. № 12. P. 1451–1456. https://doi.org/10.1111/2041-210X.12613
  63. Paradis E., Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R // Bioinformatics. 2019. V. 35. P. 526–528. https://doi.org/10.1093/bioinformatics/bty633
  64. Anderson M.J. A new method for non-parametric multivariate analysis of variance // Austral Ecology. 2001. V. 26. № 1. P. 32–46. https://doi.org/10.1046/j.1442-9993.2001.01070.x
  65. Pustejovsky J.E. Using response ratios for meta-analyzing single-case designs with behavioral outcomes // Journal of School Psychology. 2018. V. 68. P. 99–112. https://doi.org/10.1016/j.jsp.2018.02.003
  66. Koponen S., Koneva G.G. Spiders along a pollution gradient (Araneae) // Acta Zoologica Bulgarica. 2005. Suppl. № 1. P. 131–136.
  67. Koponen S. Ground-living spiders (Araneae) at polluted sites in the Subarctic // Arachnologische Mitteilungen. 2011. V. 40. P. 80–84. https://doi.org/10.5431/aramit4009
  68. Skalski T., Stone D., Kramarz P., Laskowski R. Ground beetle community responses to heavy metal contamination // Baltic Journal of Coleopterology. 2010. V. 10. № 1. P. 1–12.
  69. Gongalsky K.B., Butovsky R.O. The impact of a metallurgical plant on ground beetle (Coleoptera, Carabidae) communities // Pollution-Induced Changes in Soil Invertebrate Food-Webs. Amsterdam, 1999. P. 71–76.
  70. Золотарев М.П., Нестерков А.В. Паукообразные (Aranei, Opiliones) лугов: реакция на загрязнение выбросами Среднеуральского медеплавильного завода // Экология. 2015. № 1. C. 48–56. https://doi.org/10.7868/S036705971406016X
  71. Koponen S., Niemela P. Ground-living arthropods along pollution gradient in boreal pine forest // Entomol. Fenn. 1995. V. 6. № 2–3. P. 127–131. https://doi.org/10.33338/ef.83849
  72. Jung M.P., Kim S.T., Kim H., Lee J.H. Species diversity and community structure of ground-dwelling spiders in unpolluted and moderately heavy metal-polluted habitats // Water, Air, and Soil Pollution. 2008. V. 195. P. 15–22. https://doi.org/10.1007/s11270-008-9723-y
  73. Hillyard P.D., Sankey J.H.P. Harvestman: Synopses of the British Fauna. London: Linnean Society of London, 1989. 120 p.
  74. Грюнталь С.Ю., Сергеева Т.К. Зависимость питания подстилочных видов жужелиц (Coleoptera, Carabidae) от состава и структуры почвенного населения в лесах Подмосковья // Энтомологическое обозрение. 1994. Т. 73. № 1. C. 44–56.
  75. Воробейчик Е.Л., Бергман И.Е. Bait-lamina test в оценке загрязненных почв: выбор длительности экспонирования // Экология. 2020. № 5. C. 354–364. https://doi.org/10.31857/S0367059720050133

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect size and its 95% confidence interval for the compared periods (2005 and 2018). The designations of the ecological groups of arachnids (Arachnida) and ground beetles (Carabidae) are given in Table 1. Diversity and abundance parameters: AD – dynamic density, Sp – observed number of species, Sp’ – number of species interpolated to 100 individuals.

Download (229KB)
3. Fig. 2. Ordination (based on the Bray-Curtis distance) of arachnid (Arachnida) and ground beetle (Carabidae) complexes of compared areas and periods by absolute (dynamic density) and relative (proportion of species) abundance. 95% ellipses are shown, in brackets – proportion of explained variance, %.

Download (326KB)
4. Fig. 3. Ecological profiles (proportions of groups, %) of arachnid (Arachnida) and ground beetle (Carabidae) complexes of the compared areas and periods. Designations of properties and ecological groups are given in Table 1.

Download (785KB)

Copyright (c) 2025 Russian Academy of Sciences