Relationship between the level of synanthropization, structure and diversity of complexes of dominant species of vegetation sites with different degrees of anthropogenic transformation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article considers the nature of the relationship between the level of synanthropization, structure and diversity of species complexes dominant in relatively large (0.15–0.2 ha) sites of vegetation with different history and intensity of anthropogenic disturbances. The study was conducted in low-mountain and high-mountain regions of the Western Caucasus. The total number of studied sites was 161. Within each of them, dominant species were identified and their projective cover was estimated on 100–150 regular plots of 1 m2. The results showed that most parameters of the structure of dominant complexes are statistically significantly related to the level of their synanthropization. In particular, an increase in the values of this characteristic is accompanied by an increase in the frequency of occurrence of monodominant communities in sites, including those with a dominant species coverage of 60–80% or more. In this case, the maximum diversity of dominant complexes is observed at average values of the synanthropization level. It is suggested that the parameters of the structure of dominant complexes can be useful as an additional tool when comparing the degree of anthropogenic degradation of large areas of vegetation cover.

Full Text

Restricted Access

About the authors

V. V. Akatov

Maikop State Technological University; Caucasian State Nature Biosphere Reserve

Author for correspondence.
Email: akatovmgti@mail.ru
Russian Federation, 385000 Maikop; 385000 Maikop

T. V. Akatova

Caucasian State Nature Biosphere Reserve

Email: akatovmgti@mail.ru
Russian Federation, 385000 Maikop

T. G. Eskina

Caucasian State Nature Biosphere Reserve

Email: akatovmgti@mail.ru
Russian Federation, 385000 Maikop

N. M. Sazonets

Maikop State Technological University

Email: akatovmgti@mail.ru
Russian Federation, 385000 Maikop

S. G. Chefranov

Maikop State Technological University

Email: akatovmgti@mail.ru
Russian Federation, 385000 Maikop

References

  1. Hillebrand H., Bennett D.M., Cadotte M.W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes // Ecology. 2008. V. 89. № 6. P. 1510–1520. https://doi.org/10.1890/07-1053.1
  2. Gaston K.J. Common ecology // BioScience. 2011. V. 61. P. 354–362. https://doi.org/10.1525/bio.2011.61.5.4
  3. Ellison A.M. Foundation species, non-trophic interactions, and the value of being common // Science. 2019. V. 13. P. 254–268. https://doi.org/10.1016/j.isci.2019.02.020
  4. Gaston K.J. Valuing common species // Science. 2010. V. 327. P. 154–155. https://doi.org/10.1126/science.1182818
  5. Winfree R., Fox W.J., Williams N.M. et al. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service // Ecology Letters. 2015. V. 18. P. 626–635. https://doi.org/10.1111/ele.12424
  6. Wohlgemuth D., Solan M., Godbold J.A. Specific arrangements of species dominance can be more influential than evenness in maintaining ecosystem process and function // Scientific Reports. 2016. V. 6. Art. e39325. https://doi.org/10.1038/srep39325
  7. Avolio M.L., Forrestel E.J., Chang C.C. et al. Demystifying dominant species // New Phytol. 2019. V. 223. № 3. P. 1106–1126. https://doi.org/10.1111/nph.15789
  8. Alves C., Marcos B., Gonçalves J. et al. Co-occurrences and species distribution models show the structuring role of dominant species in the Vez watershed, in Portugal // Ecological Indicators. 2023. V. 151. Art. e110306. https://doi.org/10.1016/j.ecolind.2023.110306
  9. Lindenmayer D., Pierson J., Barton P. et al. A new framework for selecting environmental surrogates // Science of the Total Environment. 2015. V. 538. P. 1029–1038. https://doi.org/10.1016/j.scitotenv.2015.08.056
  10. Schmitz O.J., Buchkowski R.W., Burghardt K.T., Donihue C.M. Functional traits and trait-mediated interactions. Connecting community-level interactions with ecosystem functioning // Advances in Ecological Research. 2015. V. 52. P. 319–453. https://doi.org/10.1016/bs.aecr.2015.01.003
  11. Горчаковский П.Л. Антропогенные изменения растительности: мониторинг, оценка, прогнозирование // Экология. 1984. № 5. С. 3–16.
  12. Zinnen J., Spyreas G., Erdős L. et al. Expert-based measures of human impact to vegetation // Applied Vegetation Science. 2021. V. 2. № 1. Art. e12523. https://doi.org/10.1111/avsc.12523
  13. Pau S., Dee L.E. Remote sensing of species dominance and the value for quantifying ecosystem services // Remote Sensing in Ecology and Conservation. 2016. V. 2. P. 141–151. https://doi.org/10.1002/rse2.23
  14. Sheley R.L., Jacobs J.S., Carpinelli M.F. Distribution, biology, and management of diffuse knapweed (Centaurea diffusa) and spotted knapweed (Centaurea maculosa) // Weed Technology. 1998. V. 12. P. 353–362. https://doi.org/10.1017/S0890037X00043931
  15. Silliman B.R., Bertness M.D. Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes // Conservation Biol. 2004. V. 18. P. 1424–1434. https://doi.org/10.1111/j.1523-1739.2004.00112.x
  16. Eyre T.J., Wang J., Venz M.F. et al. Buffel grass in Queensland’s semi-arid woodlands: response to local and landscape scale variables, and relationship with grass, forb and reptile species // The Rangeland J. 2009. V. 31. P. 293–305. https://doi.org/10.1071/RJ08035
  17. Гусев А.П. Вторжение золотарника канадского (Solidago сanadensis L.) в антропогенные ландшафты Беларуси // Российский журн. биологич. инвазий. 2017. № 4. С. 28–35.
  18. Чадаева В.А., Шхагапсоева К.А., Цепкова Н.Л. Мониторинг распространения Ambrosia artemisiifolia L. в луговых фитоценозах Кабардино-Балкарской республики (Центральный Кавказ) // Российский журн. биологич. инвазий. 2018. № 1. С. 130–140.
  19. Абрамова Л.М., Голованов Я.М., Рогожникова Д.Р. Борщевик сосновского (Heraclеum sosnоwskyi Manden., Apiaceae) в Башкортостане // Российский журн. биологич. инвазий. 2021. № 1. С. 2–12. https://doi.org/10.35885/1996-1499-2021-14-1-2-12
  20. Акатов В.В., Акатова Т.В., Ескина Т.Г. и др. Частота и степень доминирования чужеродных и аборигенных видов в синантропных растительных сообществах юга России // Российский журн. биологич. инвазий. 2022. № 3. C. 2–17. https://doi.org/10.35885/1996-1499-15-3-02-17 [Akatov V.V., Akatova T.V., Eskina T.G. et al. Frequency of occurrence and level of dominance of alien and native species in synanthropic plant communities of Southern Russia // Russ. J. of Biological Invasions. 2022. V. 13. № 4. P. 399–411. https://doi.org/10.1134/S2075111722040026]
  21. Горбулин О.С. Комплексы доминантных форм фитопланктона разнотипных водоемов // Альгология. 2012. Т. 22. № 3. C. 303–315.
  22. Makhlough A., Hassan N.S.H., Eslami F., Leroy S.A.G. Changes in size and form in the dominant phytoplankton species in the southern Caspian Sea// Iranian J. of Fisheries Sciences. 2017. V. 16. № 2. P. 522–536.
  23. Barsukova N.N., Bazhenova O.P., Kolesnichenko L.G. Phytoplankton as an indicator of the current ecological status of the Ob River // Acta Biologica Sibirica. 2021. V. 7. P. 573–591. https://doi.org/10.3897/abs.7.e79236
  24. Hill M.O., Roy D.B., Thompson K. Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact // J. of Applied Ecology. 2002. V. 39. P. 708–720. https://doi.org/10.1046/j.1365-2664.2002.00746.x
  25. Багрикова Н.А. Антропотолерантность сообществ и стратегия сорных видов в агроценозах Крыма // Черноморск. ботан. журн. 2010. Т. 6. № 4. C. 468–474. https://doi.org/10.14255/2308-9628/10.64/6
  26. Мялик А.Н., Парфенов В.И. Синантропизация флоры Припятского полесья как показатель ее антропогенной трансформации // Proceedings of the National Academy of Sciences of Belarus. Biological series. 2018. V. 63. № 3. P. 276–285. https://doi.org/10.29235/1029-8940-2018-63-3-276-285
  27. Зверев А.А., Шереметова С.А., Шереметов Р.Т. Шкала гемероботолерантности растений как инструмент для анализа флористических данных в рамках бассейнового подхода // Проблемы промышленной ботаники индустриально развитых регионов: Материалы V Международной конф. (2–3 октября 2018 г.). Кемерово: ФИЦ УУХ СО РАН, 2018. C. 20–26.
  28. Magguran A. Ecological diversity and its measurement. Princeton, N.J.: Princeton Univ. Press, 1988. 181 р.
  29. Biswas S.R., Mallik A.U. Disturbance effects on species diversity and functional diversity in riparian and upland plant communities // Ecology. 2010. V. 91. № 1. P. 28–35. https://doi.org/10.1890/08-0887.1
  30. Fakhry A.M., Khazzan M.M., Aljedaani G.S. Impact of disturbance on species diversity and composition of Cyperus conglomeratus plant community in southern Jeddah, Saudi Arabia // J. of King Saud University - Science. 2020. V. 32. P. 600–605. https://doi.org/10.1016/j.jksus.2018.09.003
  31. Scherrer D., Guisan A. Ecological indicator values reveal missing predictors of species distributions // Scientific Reports. 2019. V. 9. Art. e3061. https://doi.org/10.1038/s41598-019- 39133-1
  32. Акатов В.В., Акатова Т.В. Изменения фитоценозов высокогорных лугов и пустошей Лагонакского нагорья (Западный Кавказ) за последние 15–20 лет // Растительность России. 2012. № 21. С. 3–12
  33. Акатов В.В., Акатова Т.В. Постпастбищное восстановление субальпийских лугов на Лагонакском нагорье (Западный Кавказ) // Бюлл. Моск. о-ва испытателей природы. Отд. биол. 2017. Т. 122. Вып. 2. С. 42–54.
  34. Pielou E.C. The measurement of diversity in different types of biological collections // J. of Theoretical Biology. 1966. V. 13. P. 131–144. https://doi.org/10.1016/0022-5193(66)90013-0
  35. Иванов А.А. Конспект флоры Российского Кавказа (сосудистые растения). Ставрополь: Изд-во СКФУ, 2019. 341 с.
  36. Зернов А.С. Флора Северо-Западного Кавказа. М.: Тов-во научн. изд. КМК, 2006. 664 с.
  37. Василевич В.И. Доминанты в растительном покрове // Ботан. журн. 1991. Т. 76. № 12. С. 1674–1681.
  38. Kowarik I. Some responses of flora and vegetation to urbanization in Central Europe // Urban Ecology: Plants and plant communities in urban environments / Eds. Sukopp H., Hejny S. and Kowarik I. SPB Academic Publishing, The Hague, 1990. P. 45–74.
  39. Чернов Ю.И. Видовое разнообразие и компенсационные явления в сообществах и биотических системах // Зоол. журн. 2005. Т. 84. № 10. С. 1221–1238.
  40. Кузнецова Н.А. Сообщества в экстремальных и антропогенных условиях (на примере таксоценозов коллембол) // Виды и сообщества в экстремальных условиях: Сборник, посвященный 75-летию акад. Ю.И. Чернова / Под. ред. Бабенко А.Б., Матвеевой Н.В., Макарова О.Л., Головач С.И. Москва–София: Тов-во науч. изд. КМК, 2009. С. 412–429.
  41. Connell J.H. Diversity in tropical rain forests and coral reefs // Science. 1978. V. 199. P. 1302–1310. https://www.jstor.org/stable/1745369
  42. Wilkinson D.M. The disturbing history of intermediate disturbance // Oikos. 1999. V. 84. № 1. P. 145–147. https://doi.org/10.2307/3546874
  43. Tognetti P.M., Chaneton E.J., Omacini M. et al. Exotic vs. native plant dominance over 20 years of old-field succession on set-aside farmland in Argentina // Biological Conservation. 2010. V. 143. P. 2494–2503. https://doi.org/10.1016/j.biocon.2010.06.016
  44. Munger G.T. Alliaria petiolata. In: Fire Effects Information System [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). 2001 // https://www.fs.fed.us/database/feis/plants/forb/allpet/all.html.
  45. Meiners S.J., Pickett S.T.A., Cadenasso M.L. Exotic plant invasions over 40 years of old field successions: community patterns and associations // Ecography. 2002. V. 25. P. 215–233. https://doi.org/10.1034/j.1600-0587.2002.250209.x
  46. Rejmánek M., Richardson D.M., Pyšek P. Plant invasions and invasibility of plant communities // Vegetation Ecology, Second Edition / Eds. van der Maarel and Janet Franklin. Chichester, United Kingdom: Wiley & Sons, Ltd., 2013. P. 387‒424. https://doi.org/10.1002/9781118452592.ch13
  47. Гусев А.П. Чужеродные виды-трансформеры как причина блокировки восстановительных процессов (на примере юго-востока Беларуси) // Российский журн. прикладной экологии. 2016. № 3. С. 10–14.
  48. Гусев А.П. Задержка восстановительной сукцессии инвазивными видами растений (на примере юго-востока Белоруссии) // Экология. 2017. № 4. С. 261–266. https://doi.org/10.7868/S0367059717040084
  49. Tilman D., May R.M., Lehman C.L., Nowak M.A. Habitat destruction and the extinction debt // Nature. 1994. V. 371. P. 65–66. https://doi.org/10.1038/371065a0
  50. Gibb H., Hochuli D.F. Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages // Biological Conservation. 2002. V. 106. P. 91–100. https://doi.org/10.1016/S0006-3207(01)00232-4
  51. Krauss J., Klein A.M., Dewenter I.S., Tscharntke T. Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands // Biodiversity and Conservation. 2004. V. 13. P. 1427–1439. https://doi.org/10.1023/B:BIOC.0000021323.18165.58
  52. Hahs A.K., McDonnell M.J., McCarthy M.A. et al. A global synthesis of plant extinction rates in urban areas // Ecology Letters. 2009. V. 12. № 11. P. 1119–1276. https://doi.org/10.1111/j.1461-0248.2009.01372.x
  53. Myers N., Mittermeier R., Mittermeier C. et al. Biodiversity hotspots for conservation priorities // Nature. 2000. V. 403. P. 853–858. https://doi.org/10.1038/35002501
  54. McKinney M.L. Urbanization, biodiversity, and conservation // BioScience. 2002. V. 52. № 10. P. 883–890. https://doi.org/10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2
  55. Kühn I., Brandl R., Klotz S. The flora of German cities is naturally species rich // Evolutionary Ecology Research. 2004. V. 6. P. 749–764. https://www.researchgate.net/publication/222096009
  56. Pyšek P. Alien and native species in Central European urban floras: a quantitative comparison // Journal of Biogeography. 1998. V. 25. № 1. P. 155–163. https://doi.org/10.1046/j.1365-2699.1998.251177.x
  57. Wania A., Kühn I., Klotz S. Plant richness patterns in agricultural and urban landscapes in Central Germany – spatial gradients of species richness // Landscape and Urban Planning. 2006. V. 75. P. 97–110. https://doi.org/10.1016/j.landurbplan.2004.12.006
  58. Kondratyeva A., Knapp S., Durka W. et al. Urbanization effects on biodiversity revealed by a two-scale analysis of species functional uniqueness vs. redundancy // Front. Ecol. Evol. 2020. V. 8. Art. 73. https://doi.org/10.3389/fevo.2020.00073
  59. Ruas R., Costa L., Bered F. Urbanization driving changes in plant species and communities – A global view // Global Ecology and Conservation. 2022. V. 38. Art. e02243. https://doi.org/10.1016/j.gecco.2022.e02243
  60. Горчаковский П.Л., Харитонова О.Л. Синантропизация растительного покрова Печоро-Илычского биосферного заповедника в высотном градиенте // Экология. 2007. № 6. С. 403–408.
  61. Морозова О.В., Царевская Н.Г. Участие чужеродных видов сосудистых растений во флорах заповедников Европейской России // Изв. РАН. Серия географич. 2010. № 4. С. 54–62.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The relationship between the synanthropization level of dominant complexes and the proportion of survey plots with monodominant communities in the sample plots: a – high-mountain vegetation; b – vegetation in the vicinity of populated areas. SL – synanthropization level of dominant complexes, Dd – proportion of survey plots with monodominant communities. To test for a nonlinear component in the relationship between SL and Dd, we added a quadratic component to the linear regression equations, but in both cases it turned out to be statistically insignificant (a: 0.053; b: –0.098).

Download (141KB)
3. Fig. 2. The relationship between the level of synanthropization of dominant complexes on sample plots, the frequency of occurrence of survey plots with first-rank dominants, and the evenness of the frequency of species dominance: a, c – high-mountain vegetation; b, d – vegetation of the vicinity of populated areas. SL – level of synanthropization of dominant complexes; D1 – proportion of survey plots with first-rank dominants from the total number of plots with monodominant communities on sample plots; J’ – Pielou evenness index. The nonlinear nature of the relationship in all cases is evidenced by the statistical significance of the quadratic coefficients of the approximating equations (a: 1.93, P < 0.001; b: 0.916, P < 0.001; c: –1.43, P < 0.05; d: –0.66, P < 0.001).

Download (181KB)
4. Fig. 3. The relationship between the synanthropization level and the diversity of dominant complexes: a – high-mountain vegetation; b – vegetation in the vicinity of populated areas. SL – synanthropization level of dominant complexes, d – diversity of dominant complexes. The nonlinear nature of the relationship in both cases is evidenced by the statistical significance of the quadratic coefficients of the approximating equations (a: –13.33, P < 0.001; b: –11.51, P < 0.001).

Download (124KB)

Copyright (c) 2025 Russian Academy of Sciences