Measurement of methane and carbon dioxide fluxes from soils and plants under the mixed forest canopy in the south of Western Siberia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Full Text

Restricted Access

About the authors

L. A. Ivanov

Tyumen State University; Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: leonidiv72@mail.ru
Russian Federation, 625003 Tyumen; 620130 Yekaterinburg

L. A. Ivanova

Tyumen State University; Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Email: leonidiv72@mail.ru
Russian Federation, 625003 Tyumen; 620130 Yekaterinburg

D. A. Ronzhina

Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Email: leonidiv72@mail.ru
Russian Federation, 620130 Yekaterinburg

S. V. Migalina

Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Email: leonidiv72@mail.ru
Russian Federation, 620130 Yekaterinburg

P. K. Yudina

Botanical Garden of the Ural Branch of the Russian Academy of Sciences

Email: leonidiv72@mail.ru
Russian Federation, 620130 Yekaterinburg

I. V. Kuzmin

Tyumen State University

Email: leonidiv72@mail.ru
Russian Federation, 625003 Tyumen

A. A. Khapugin

Tyumen State University

Email: leonidiv72@mail.ru
Russian Federation, 625003 Tyumen

References

  1. Dalal R.C., Allen D.E. Greenhouse gas fluxes from natural ecosystems // Aust. J. Bot. 2008. V. 56. № 5. P. 369–407.
  2. Blais A.-M., Lorrain S., Tremblay A. Greenhouse gas fluxes (CO₂, CH4 and N2O) in forests and wetlands of boreal, temperate and tropical regions // Greenhouse Gas Emissions – Fluxes and Processes / Eds. Tremblay A., Varfalvy L., Roehm S. and Garneau M. Berlin/Heidelberg: Springer-Verlag, 2005. P. 87–127.
  3. Barba J., Brewer P.E., Pangala S.R., Machacova K. Methane emissions from tree stems – current knowledge and challenges: an introduction to a Virtual Issue // New Phytol. 2024. V. 241. № 4. P. 1377–1380.
  4. Keppler F., Hamilton J.T.G., Braß M., Röckmann T. Methane emissions from terrestrial plants under aerobic conditions // Nature. 2006. V. 439. № 7073. P. 187–191.
  5. Carmichael M.J., Bernhardt E.S., Bräuer S.L., Smith W.K. The role of vegetation in methane flux to the atmosphere: Should vegetation be included as a distinct category in the global methane budget? // Biogeochemistry. 2014. V. 119. P. 1–24.
  6. Nisbet R.E.R., Fisher R., Nimmo R.H. et al. Emission of methane from plants // Proc. R. Soc. B Biol. Sci. 2009. V. 276. № 1660. P. 1347–1354.
  7. Zeikus J.G., Ward J.C. Methane formation in living trees: a microbial origin // Science. 1974. V. 184. № 4142. P. 1181–1183.
  8. Мухин В.А., Воронин П.Ю. Выделение метана из древесины живых деревьев // Физ. раст. 2011. Т. 58. № 2. С. 283–289.
  9. Covey K.R., Megonigal J.P. Methane production and emissions in trees and forests // New Phytol. 2019. V. 222. № 1. P. 35–51.
  10. Jeffrey L.C., Maher D.T., Tait D.R., Johnston S.G. A small nimble in situ fine-scale flux method for measuring tree stem greenhouse gas emissions and processes (S.N.I.F.F) // Ecosystems. 2020. V. 23. № 8. P. 1676–1689.
  11. Fest B., Hinko-Najera N., von Fischer J.C. et al. Soil methane uptake increases under continuous throughfall reduction in a temperate evergreen, broadleaved eucalypt forest // Ecosystems. 2017. V. 20. № 2. P. 368–379.
  12. Feng H., Guo J., Peng C. et al. Global estimates of forest soil methane flux identify a temperate and tropical forest methane sink // Geoderma. 2023. V. 429. Art. 116239.
  13. Machacova K., Bäck J., Vanhatalo A. et al. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest // Sci. Rep. 2016. V. 6. Art. 23410.
  14. Сабреков А.Ф., Глаголев М.В., Фастовец И.А. и др. Связь потребления метана с дыханием почв и травяно-мохового яруса в лесных экосистемах южной тайги Западной Сибири // Почвоведение. 2015. Т. 2015. № 8. C. 963–973.
  15. Pitz S.L., Megonigal J.P., Chang C.H., Szlavecz K. Methane fluxes from tree stems and soils along a habitat gradient // Biogeochemistry. 2018. V. 137. № 3. P. 307–320.
  16. Ivanova L.A., Zolotareva N. V., Ronzhina D.A. et al. Leaf functional traits of abundant species predict productivity in three temperate herbaceous communities along an environmental gradient // Flora. 2018. V. 239. P. 11–19.
  17. Семенов В.М., Кравченко И.К., Кузнецова Т.В. и др. Сезонная динамика окисления атмосферного метана в серых лесных почвах // Микробиология. 2004. Т. 73. № 3. C. 423–429.
  18. Wang Y., Chen H., Zhu Q. et al. Soil methane uptake by grasslands and forests in China // Soil Biol. Biochem. 2014. V. 74. P. 70–81.
  19. Peichl M., Arain M.A., Ullah S., Moore T.R. Carbon dioxide, methane, and nitrous oxide exchanges in an age-sequence of temperate pine forests // Glob. Chang. Biol. 2010. V. 16. № 8. P. 2198–2212.
  20. Bowden R.D., Newkirk K.M., Rullo G.M. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions // Soil Biol. Biochem. 1998. V. 30. № 12. P. 1591–1597.
  21. Wang Z.P., Han X.G., Wang G.G. et al. Aerobic methane emission from plants in the Inner Mongolia steppe // Environ. Sci. Technol. 2008. V. 42. № 1. P. 62–68.
  22. Guo X., Du Y., Li J. et al. Aerobic methane emission from plant: Comparative study of different communities and plant species of alpine meadow // Polish J. Ecol. 2015. V. 63. P. 223–232.
  23. Villa J.A., Ju Y., Stephen T. et al. Plant-mediated methane transport in emergent and floating-leaved species of a temperate freshwater mineral-soil wetland // Limnol. Oceanogr. 2020. V. 65. № 7. P. 1635–1650.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Greenhouse gas measuring complex.

Download (881KB)
3. Fig. 2. Greenhouse gas fluxes in the studied forest communities near the soil surface with and without plants (a negative value means gas absorption, a positive value means gas emission). Vertical segments show the error of the mean. The community numbers are shown on the abscissa (see Table 1). Asterisks indicate the significance of differences between measurement options (with and without plants) for each community based on the results of the t-test for dependent samples: * p < 0.05, **p < 0.01, *** p < 0.001, ns – insignificant.

Download (484KB)

Copyright (c) 2025 Russian Academy of Sciences