Propagation of spin waves in nanoscale bonded ferrite films
- Authors: Balaeva V.V1, Romanenko D.V1, Morozova M.A1
-
Affiliations:
- Saratov State University
- Issue: Vol 89, No 4 (2025)
- Pages: 660-666
- Section: Wave Phenomena: Physics and Applications
- URL: https://rjmseer.com/0367-6765/article/view/690826
- DOI: https://doi.org/10.31857/S0367676525040264
- EDN: https://elibrary.ru/GUQOLV
- ID: 690826
Cite item
Full Text
Abstract
Using micromagnetic modeling methods the propagation of spin waves in two nanoscale laterally bonded ferrite films was studied. The features of the power pumping of surface and backward volume magnetostatic waves are investigated. The effect of the distance between the films and the films' width of the films on the pumping length and cutoff frequency of these types of waves has been established.
About the authors
V. V Balaeva
Saratov State University
Email: skonda2000@mail.ru
Saratov, Russia
D. V Romanenko
Saratov State UniversitySaratov, Russia
M. A Morozova
Saratov State UniversitySaratov, Russia
References
- Mahmoud A., Ciubotaru F., Vanderveken F. et al. // J. Appl. Phys. 2020. V. 128. Art. No. 161101.
- Chumak A.V., Kabos P., Wu M. et al. // IEEE Trans. Magn. 2022. V. 58. P. 1.
- Wei D., Xie L., Lee K.K. et al. // Nature Commun. 2013. V. 4. Art. No. 1374.
- Lavrijsen R., Lee J.Y., Fernández-Pacheco A. et al. // Nature. 2013. V. 493. P. 647.
- Люксем А. Связанные и параметрические колебания в электронике. М.: ИЛ, 1963. 352 с.
- Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. Магнитогатические волны в электронике СВЧ. Саратов: Изд. Сарат. ун – та, 1993. 311 с.
- Киевич Ю.С., Аррасал Г.П. Оптические соционы. М.: Физматент, 2005. 648 с.
- Agrawal G.P. Lightwave Technology: Telecommunication Systems. John Wiley & Sons, Inc., Hoboken, New Jersey. 2005. 480 p.
- Nikitov S.A., Talihadesani P., Tsai C.S. // J. Magn. Magn. Mater. 2001. V. 236. P. 320.
- An K., Bhat V.S., Mruczkiewicz M. et al. // Phys. Rev. Appl. 2019. V. 11. No. 3. Art. No. 034065.
- Wang Q., Pirro P., Verba R. et al. // Sci. Advances. 2018. V. 4. No. 1. Art. No. e1701517.
- Sadovnikov A.V., Odintsov S.A., Beginin E.N. et al. // Phys. Rev. B. 2017. V. 96. Art. No. 060481(R).
- Sadovnikov A.V., Grachev S.A., Beginin E.N. et al. // Phys. Rev. Appl. 2017. V. 7. Art. No. 014013.
- Klingler S., Pirro P., Brücher T. et al. // Appl. Phys. Lett. 2015. V. 106. Art. No. 212406.
- Vogt K., Fradin F.Y., Pearson J.E. et al. // Nature Commun. 2014. V. 5. P. 3727.
- Zeleni M., Tobik J., Krawczyk M. et al. // Phys. Stat. Sol. RRL. 2017. V. 11. No. 10. Art. No. 1700259.
- Mruczkiewicz M., Graczyk P., Lupo P. et al. // Phys. Rev. B. 2017. V. 96. Art. No. 104411.
- Wang Q., Pirro P., Verba R. et al. // Sci. Advances. 2017. V. 4. Art. No. e1701517.
- Sadovnikov A.V., Beginin E.N., Morozova M.A. et al. // Appl. Phys. Lett. 2016. V. 109. Art. No. 042407.
- Chumak A.V., Serga A.A., Hillebrands B. // Nature Commun. 2014. V. 5. P. 4700.
- Kumar D., Dmyrtiev O., Ponraj S., Barman A. // J. Phys. D. Appl. Phys. 2012. V. 45. Art. No. 015001.
- Sasaki H., Mikoshiba N. // Electron. Lett. 1979. V. 15. P. 172.
- Castera J.P., Hartemann P. // Electron. Lett. 1980. V. 16. P. 195.
- O’Keefe T.W., Patterson R.W. // J. Appl. Phys. 1978. V. 49. P. 4886.
Supplementary files
