Abstract
Рассматривается задача стабилизации в нуль в условиях воздействия помехи в терминах дифференциальной игры преследования. Динамика описывается нелинейной автономной системой дифференциальных уравнений. Множество значений управлений преследователя является конечным, убегающего (помехи) — компактом. Целью управления, т.е. целью преследователя, является приведение, в рамках конечного времени, траектории в любую наперёд заданную окрестность нуля вне зависимости от действий помехи. Для построения управления преследователю известны только фазовые координаты в некоторые дискретные моменты времени и неизвестен выбор управления помехи. В работе получены условия существования окрестности нуля, из каждой точки которой происходит поимка в указанном смысле. Выигрышное управление строится конструктивно и имеет дополнительное свойство, указанное в теореме. Кроме того, получена оценка времени поимки, которая является неуменьшаемой в некотором смысле.