Effect of acetic acid on the resistance to local corrosion of 13% chromium steel in CO₂-containing environments

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of concentration of acetic acid ranged from 0 to 5000 ppm on the processes of initiation and propagation of pitting corrosion in martensitic class stainless steel containing 13% chromium was studied. The research was conducted in CO₂-saturated 5 wt. % sodium chloride solutions at various temperatures using electrochemical methods, including cyclic potentiodynamic polarization and pulse potentiostatic technique. The results show that the presence of acetic acid stimulates the formation and development of localized corrosion, increases the metal dissolution rate within the pits, promotes the initiation of a greater number of pits, and facilitates their spread on surface, leading to the expansion due to smaller pits adjacent to the main ones.

Full Text

Restricted Access

About the authors

I. Yu. Pyshmintsev

TMK Research LLC

Email: o.vavilova@tmk-group.com
Russian Federation, Moscow

E. R. Mansurova

TMK Research LLC

Author for correspondence.
Email: e.mansurova@tmk-group.com
Russian Federation, Moscow

A. N. Maltseva

TMK Research LLC

Email: o.vavilova@tmk-group.com
Russian Federation, Moscow

O. V. Vavilova

TMK Research LLC

Email: o.vavilova@tmk-group.com
Russian Federation, Moscow

S. A. Kosteva

TMK Research LLC

Email: o.vavilova@tmk-group.com
Russian Federation, Moscow

S. I. Kotov

TMK Research LLC

Email: o.vavilova@tmk-group.com
Russian Federation, Moscow

S. I. Kotov

TMK Research LLC

Email: o.vavilova@tmk-group.com
Russian Federation, Moscow

References

  1. Zhang, H., Zhao, Y.L., and Jiang, Z.D., Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO₂ and Cl– environment, Mater. Lett., 2005, vol. 59, p. 3370.
  2. Dalmau, A. and Richard, C., Degradation mechanisms in martensitic stainless steels: Wear, corrosion and tribocorrosion appraisal, Tribol. Int. J., 2018, vol. 121, p. 167.
  3. Du, J., Xiang, K., Zhao, L., Lan, X., Liu, P., and Liu, Y., Corrosion inhibition of 13Cr stainless steel in HCl/HAc/HF acid solution, Int. J. Electrochem. Sci., 2019, vol. 14, no. 9, p. 8919.
  4. Пумпянский, Д.А., Пышминцев, И.Ю., Выдрин, А.В., Кузнецов, В.И., Красиков, А.В. Основы металловедения и технологии производства труб из коррозионно-стойких сталей. М.: Металлургиздат, 2023. 682 с. [Pumpyanskii, D.A., Pyshmintsev, I.Yu., Vydrin, A.V., Kuznetsov, V.I., and Krasikov, A.V., Fundamentals of Materials Science and Production Technology of Corrosion-Resistant Steel Pipes (in Russian). Moscow: Metallurgizdat, 2023. 682 p.]
  5. Мач, С., Бени, Х. Влияние температуры на локальную коррозию нержавеющей стали. Электрохимия. 2000. Т. 36. С. 1268. [Matsch, St. and Bohni, H., Influens of temperature in the localized corrosion of stainless steels, Russ. J. Eleсtrochem., 2000, vol. 36, p. 1122.]
  6. Yin, Z.F., Feng, Y.R., Zhao, W.Z., Yin, C.X., and Tian, W., Pitting corrosion behaviour of 316L stainless steel in chloride solution with acetic acid and CO₂, Corros. Eng. Sci. Technol., 2011, vol. 46, no. 1, p. 56.
  7. Al-Moubaraki, A.H. and Obot, I.B., Top of the line corrosion: causes, mechanisms, and mitigation using corrosion inhibitors, Arab. J. Chem., 2021, vol. 14, no. 5, p. 103116.
  8. Larrey, D. and Gunaltun, Y., Correlation of cases of top of line corrosion with calculated water condensation rates, NACE Corros., 2000, no. 71.
  9. ISO 21457:2010. Petroleum, petrochemical and natural gas industries – Materials selection and corrosion control for oil and gas production systems. 2010.
  10. NORSOK M-001. Material selection. 2014.
  11. Plennevaux, C., Cassagne, Th., Bonis, M., Ferrando, N., and Kittel, J., Improving pH prediction for high pressure and high temperature applications in oil and gas production, Corrosion, 2013.
  12. Sun, Y., George, K., and Nesic, S., The effect of Cl– and acetic acid on localized CO₂ corrosion in wet gas flow, NACE – Int. Corros. Conf. Ser., 2003, no. 03327.
  13. George, K., Nesic, S., and de Waard, C., Electrochemical investigation and modeling of carbon dioxide corrosion of carbon steel in the presence of acetic acid, Corrosion, 2004, no. 04059.
  14. Guo, X., Chen, Z., Liu, D., Bando, K., and Tomoe, Y., The effect of acetic acid and acetate on CO₂ corrosion of carbon steel, NACE – Int. Corros. Conf. Ser., 2005, no. 05306.
  15. Li, P., Du, M., Hou, J., Zhang, Y., Fan, L., and Lin, C., Corrosion behavior of 316l stainless steel in oilfield produced water in presence of CO₂ and acetic acid, Int. J. Electrochem. Sci., 2020, vol. 15, p. 4287.
  16. Hedges, B. and McVeigh, L., The role of acetate in CO₂ corrosion: The double whammy, NACE – Int. Corros. Conf. Ser., 1999, no. 21.
  17. Zhang, H., Huang, W., Wei, H., Chen, Z., Cao, J., Tang, Y., Zhao, X., and Zuo, Y., Effect of HAc on the metastable pitting corrosion of 304 SS in NaCl solution, Materials, 2022, no. 15(10):3618.
  18. Rao, V.S. and Singhal, L.K., Corrosion behavior of Cr–Mn–Ni stainless steel in acetic acid solution, Corrosion, 2010, vol. 66, no. 8, p. 085004.
  19. Tran P., Brown B., Nesic S. Investigation of the electrochemical mechanisms for acetic acid corrosion of mild steel, Corrosion, 2014, vol. 70, no. 3, p. 223.
  20. Пумпянский, Д.А., Пышминцев, И.Ю., Битюков, С.М., Гервасьев, М.А., Гусев, А.А. Особенности микроструктуры, фазового состава и возможности упрочнения нержавеющих сталей с 13–17% Cr. Известия вузов. Черная металлургия. 2022. Т. 65. № . 9. С. 644. [Pumpyanskii, D.A., Pyshmintsev, I.Yu., Bityukov, S.M., Gervas’ev, M.A., and Gusev, A.A., Features of microstructure, phase composition and strengthening capability of stainless steels with 13–17% Cr, Izvestiya. Ferrous Metallurgy, 2022, vol. 65, no. 9, p. 644.]
  21. ASTM G61–1986 (R2018). Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron-, nickel-, or cobalt-based alloys.
  22. Esmailzadeh, S., Aliofkhazraei, M., and Sarlak, H., Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review, Prot. Met. Phys. Chem. Surfaces, 2018, vol. 54, no. 5, p. 976.
  23. Davydov, A.D., Shaldaev, V.S., and Engel, G.R., Pitting on the 20Kh13 steel in chloride solutions, Russ. J. Eleсtrochem., 2006, vol. 42, p. 121.
  24. Lei, X., Feng, Y., Zhang, J., Fu, A., Yin, C., and Macdonald, D.D., Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel, Electrochim. Acta, 2016, vol. 191, p. 640.
  25. Gao, J., Jiang, Y., Deng, B., Ge, Z., and Li, J., Determination of pitting initiation of duplex stainless steel using potentiostatic pulse technique, Electrochim. Acta, 2010, vol. 55, no. 17, p. 4837.
  26. Chen, B., Sun, Y., Cai, D., Yao, Q., Yin, L., Wan, Y., Jiang, Y., and Li, J., Use of the potentiostatic pulse technique to study and influence pitting behavior of 317L stainless steel, J. Electrochem. Soc., 2020, vol. 167, no. 4, p. 041509.
  27. Sun, Y., Sun, L., Dai, N., Liu, Y., Wu, J., Li, J., and Jiang, Y., Application of potentiostatic pulse technique and statistical analysis in evaluating pitting resistance of aged 317L stainless steel, Mater. Corros., 2020, vol. 71, no. 6, p. 900.
  28. Chen, S., Sun, L., Cao, W., Zhao, T., Qiu, J., and Li, W., Research on the pitting behavior of high nitrogen austenitic stainless steel 316LN in sodium chloride solution by using modified potentiostatic pulse test, J. Electroanal. Chem., 2022, vol. 922.
  29. Racot, A., Aubert, I., Touzet, M., Thiebaut, S., and Demesy, M., Statistical analysis of the pitting corrosion induced by potentiostatic pulse tests of wrought and SLM 316L stainless steels, Corros. Sci., 2020, vol. 197.
  30. Shao, Z., Yu, D., Shao, D., Du, Y., Zheng, D., Qiu, Z., and Wu, B., A protective role of Cl– ion in corrosion of stainless steel, Corros. Sci., 2024, vol. 226, p. 111631.
  31. Yin, Z.F., Zhao, W.Z., Lai, W.Y., and Zhao, X.H., Electrochemical behaviour of Ni-base alloys exposed under oil/gas field environments, Corros. Sci., 2009, vol. 51, no. 8, p. 1702.
  32. Tang, Y., Zuo, Y., Wang, J., Zhao, X., Niu, B., and Lin, B., The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions, Corros. Sci., 2013, vol. 80, p. 111.
  33. Lu, P., Zhang, P., Feng, H., Li, H., and Zhang, S., Revealing the impact of inclusion types on pitting corrosion behavior of high-nitrogen stainless bearing steels with different Ce contents: Induction effect of oxides/sulfides and inhibition effect of nitrides, Corros. Sci., 2024, vol. 236, p. 112247.
  34. Wang, X., Luo, H., Zhao, Q., Cheng, H.H., Li, Q., Pan, Z., Wei, Y., Ma, Y., and Li, X., Investigations on the passive and pitting behaviors of 17–4 PH martensitic stainless steel containing Al2O3 inclusions in chlorine environment, Colloids Surfaces A Physicochem. Eng. Asp., 2022, vol. 660.
  35. Li, T., Wu, J., and Frankel, G.S., Localized corrosion: Passive film breakdown vs. Pit growth stability, Part VI: Pit dissolution kinetics of different alloys and a model for pitting and repassivation potentials, Corros. Sci., 2021, vol. 182, p. 109277.
  36. Crolet, J.-L., Thevenot, N., and Dugstad, A., Role of free acetic acid on the CO₂ corrosion of steels, NACE Corosion, 1999, no. 24.
  37. Kahyarian, A., Schumaker, A., Brown, B., and Nesic, S., Acidic corrosion of mild steel in the presence of acetic acid: Mechanism and prediction, Electrochim. Acta, 2017, vol. 258, p. 639.
  38. Nesic, S., Kahyarian, A., and Choi, Y.S., Implementation of a comprehensive mechanistic prediction model of mild steel corrosion in multiphase oil and gas pipelines, Corrosion, 2019, vol. 75, no. 3, p. 274.
  39. Amri, J., Gulbrandsen, E., and Nogueira, R.P., Propagation and arrest of localized attacks in carbon dioxide corrosion of carbon steel in the presence of acetic acid, Corrosion, 2018, vol. 66, no. 3, p. 035001.
  40. Wei, J. and Zhou, B., Effect of acetic acid on the pitting corrosion of 2Cr12MoV turbine steel in early condensates containing chloride ions, Int. J. Electrochem. Sci., 2017, vol. 12, no. 4, p. 3166.
  41. Amri, J., Gulbrandsen, E., and Nogueira, R.P., Pit growth and stifling on carbon steel in CO₂-containing media in the presence of HAc, Electrochim. Acta, 2009, vol. 54, no. 28, p. 7338.
  42. Amri, J., On growth and stifling of localized corrosion attacks in CO₂ and acetic acid environments: Application to the top-of-line corrosion of wet gas pipelines operated in stratified flow regime, HAL, 2009.
  43. Amri, J., Gulbrandsen, E., and Nogueira, R.P., The effect of acetic acid on the pit propagation in CO₂ corrosion of carbon steel, Electrochem. commun., 2008, vol. 10, no. 2, p. 200.
  44. Wang, Y., Cheng, G., Wu, W., Qiao, Q., Li, Y., and Li, X., Applied surface science effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions, Appl. Surf. Sci., 2015, vol. 349, p. 746.
  45. Tsutsumi, Y., Nishikata, A., and Tsuru, T., Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions, Corros. Sci., 2007, vol. 49, p. 1394.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation: (a) potentiodynamic method; (b) pulse potentiostatic method.

Download (224KB)
3. Fig. 2. Polarization curves in 5 wt.% NaCl solution saturated with CO₂ at pH 3.5, 0–5000 ppm CH₃COOH at ambient temperatures: 20, 40, 60°C.

Download (398KB)
4. Fig. 3. Electrochemical parameters obtained from polarization curves: pitting potential (Epit), pitting resistance basis (Epit–Ecorr), repassivation potential (Erp), passivation current (ipas).

Download (379KB)
5. Fig. 4. Chronamperograms obtained by the pulse potentiostatic method in a 5 wt.% NaCl solution saturated with CO₂ at pH 3.5, 0–5000 ppm CH₃COOH at ambient temperatures of 20; 40 and 60°C.

Download (868KB)
6. Fig. 5. Histograms of the distribution of pit density from diameter after the pulse potentiostatic method depending on the concentration of acetic acid and the temperature of the environment.

Download (671KB)
7. Fig. 6. Results of metallographic evaluation of the surface of samples after the potentiostatic pulse method depending on the concentration of acetic acid and the temperature of the environment: maximum pitting diameter, maximum pitting depth and pitting density.

Download (336KB)
8. Fig. 7. Micrographs (SEM) after experiments at 60°C at different concentrations of CH₃COOH: (a) 0 ppm; (b) 500 ppm; (c) 1000 ppm; (d) 5000 ppm.

Download (996KB)
9. Fig. 8. Micrographs of single pits after testing with 1000 ppm CH₃COOH: 20°C (a); 40°C (b); 60°C (c).

Download (615KB)

Copyright (c) 2025 Russian Academy of Sciences