Electrical conductivity of a thin polycrystalline film considering various specularity coefficients
- Authors: Kuznetsova I.A.1, Romanov D.N.1
-
Affiliations:
- P.G. Demidov Yaroslavl State University
- Issue: Vol 54, No 4 (2025)
- Pages: 301-309
- Section: MODELING
- URL: https://rjmseer.com/0544-1269/article/view/690995
- DOI: https://doi.org/10.31857/S0544126925040044
- EDN: https://elibrary.ru/qhdylk
- ID: 690995
Cite item
Abstract
An expression for the electrical conductivity of a thin polycrystalline film is obtained. To solve the problem, a kinetic equation is used to approximate the relaxation time, considering electron scattering at the boundaries of polycrystalline film crystallites. The effect of surface scattering of charge carriers is described by diffuse-specular Fuchs boundary conditions. The limiting cases of a degenerate and non-degenerate electron gas are considered. The dependence of the electrical conductivity on the scattering intensity at the crystallite boundary and on the electromagnetic wavelength inside the film is analyzed. The obtained results are compared with the known experimental data for the silicon layer.
About the authors
I. A. Kuznetsova
P.G. Demidov Yaroslavl State University
Author for correspondence.
Email: romanov.yar357@mail.ru
Yaroslavl, Russia
D. N. Romanov
P.G. Demidov Yaroslavl State University
Email: romanov.yar357@mail.ru
Yaroslavl, Russia
References
- Nurdinova R.A., Kasimakhunova A.M. AHV elements with birefringence // Uzbek Jornal of Physics. 2017. V. 19. P. 302–306.
- Pyataykin I.I. The influence of the internal dimensional effect in polycrystalline metal films on the coefficients of reflection, transmission and absorption of microwave electromagnetic waves in them // Journal of Radio Electronics. 2020. № 10. https://doi.org/10.30898/1684-1719.2020.10.5
- Galchenkov L.A., Pyataikin I.I. Enhancement of conduction electron reflection specularity in gold films coated with Langmuir-Blodgett nanolayers // Journal of Radio Electronics. 2019. № 11. https://doi.org/10.30898/1684-1719.2019.11.6
- Khorin I., Orlikovsky N., Rogozhin A., Tatarintsev A., Pronin S., Andreev V., Vdovin V. Optical coefficients of nanometer-thick copper and gold films in microwave frequency range // Proc. SPIE. 2016. V. 10224. P. 1022407. https://doi.org/10.1117/12.2266504
- Kaplan A.E. Metallic nanolayers: a sub-visible wonderland of optical properties [Invited] // J. Opt. Soc. Am. B. 2018. V. 35. P. 1328–1340. https://doi.org/ 10.1364/JOSAB.35.001328
- Yusupova D.A., Fozilova M.D. Main characteristics and features of semiconductor film strain transducers // Scientific Progress. 2021. V. 2, P. 441–447.
- Nakate U.T. et al. WO3 nanorods structures for high-performance gas sensing application // Materials Letters. 2021. V. 299. P. 130092. https://doi.org/ 10.1016/j.matlet.2021.130092
- Huang Y. et al. Switchable band-pass filter for terahertz waves using VO2-based metamaterial integrated with silicon substrate // Opt. Rev. Springer Japan. 2021. V. 28. P. 92–98. https://doi.org/10.1007/s10043-020-00637-1
- Long L. et al. Thermally-switchable spectrally-selective infrared metamaterial absorber/emitter by tuning magnetic polariton with a phase-change VO2 layer // Mater. Today Energy. Elsevier Ltd. 2019. V. 13, P. 214–220. https://doi.org/ 10.1016/j.mtener.2019.05.017
- Bhattacharya S. Towards 30% power conversion efficiency in thin-silicon photonic-crystal solar cells // Physical Review Applied. 2019. V. 11, P. 014005. https://doi.org/10.1103/PhysRevApplied.11.014005
- Kalinovskii V.S., Kontrosh E.V., Andreeva A.V., Andreev V.M., Malyutina-Bronskaya V.V., Zalesskii V.B., Lemeshevskaya A.M., Kuzoro V.I., Khalimanovich V.I., Zaitseva M.K. Hybrid Solar Cells with a Sunlight Concentrator System // Technical Physics Letters. 2019. V. 45. P. 850–852. https://doi.org/10.1134/S1063785019080236
- Mayadas A.F. Electrical resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces // Phys. Rev. B. 1970. V. 1, P. 1382-1389. https://doi.org/10.1103/PhysRevB.1.1382
- Lanzillo N.A., Bajpai U., Garate I., Chen C.T. Size-Dependent Grain-Boundary Scattering in Topological Semimetals // Phys. Rev. Applied. 2022. V. 18. P. 034053. https://doi.org/10.1103/PhysRevApplied.18.034053
- Gall D. The search for the most conductive metal for narrow interconnect lines // J. Appl. Phys. 2020. V. 12. P. 050901. https://doi.org/10.1063/1.5133671
- Hempel H. et al. Predicting Solar Cell Performance from Terahertz and Mi-crowave Spectroscopy // Advanced Energy Materials. 2022. V. 12. https://doi.org/10.1002/aenm.202102776
- Kuznetsova I.A., Romanov D.N., Savenko O.V., Yushkanov A.A. Calculating the high-frequency electrical conductivity of a thin semiconductor film for different specular reflection coefficients of its surface // Russian Microelectronics. 2017. V. 46. № 4. P. 252–260. https://doi.org/10.1134/S1063739717040059
- Zavitaev E.V., Simonova T.È., Utkin A.I. Interaction of H-wave with the thin metal layer with generalized boundary conditions // Zhurnal Tekhnicheskoi Fiziki. 2023. V. 93. № 6. P. 735–739. https://doi.org/10.1134/S1063784224040492
- Utkin A.I., Yushkanov A.A. The effect of specular reflectances on the interaction of an electromagnetic E-wave with a thin metal film placed between two dielectric media // Optics and Spectroscopy. 2018. V. 124. № 2. P. 250–254. https://doi.org/10.1134/S0030400X18020194
- Kuznetsov P.A., Moskovsky S.B., Romanov D.N. Influence of isoenergetic surface on electrical conductivity and the Hall constant for a thin semiconductor film // Russian Microelectronics. 2022. V. 51. № 3. P. 218–229. https://doi.org/10.1134/S1063739722020068
- Zavitaev E.V., Rusakov O.V., Chukhleb E.P. The effect of paired collisions of charge carriers on electrical conductivity thin conductive layer // Zhurnal Tekhnicheskoi Fiziki. 2023. V. 93. № 11. P. 1561–1569. https://doi.org/10.1134/S1063784224060483
- Nhung L.T., Yushkanov A.A. Transverse electrical conductivity and dielectric constant of a polycrystalline metal // Zhurnal Tekhnicheskoi Fiziki. 2021. V. 91. № 6. P. 943–947. https://doi.org/10.21883/JTF.2021.06.50863.122-20
- MacHale J. et al. Exploring conductivity in ex-situ doped Si thin films as thickness approaches 5 nm // J. Appl. Phys. 2019. V. 125. P. 225709. https://doi.org/10.1063/1.5098307
Supplementary files
